The items marked with ► should be mastered early in the semester (first two weeks).

▶ Arithmetic

Syntax	Read As	Example
-, +, *, /	subtraction, addition, multiplication, division	2*x-4/x
space	multiplication	$\tt k \ x \ is \ the \ same \ as \ \tt k \ast x$
\wedge	power	2^3

Common Error: forgetting the space in multiplication: kx does not equal k times x.

▶ Brackets

Syntax	Read As	Use	Example
[]	square brackets	enclosing arguments of functions	Sin[2.5]
()	round brackets	algebraic groupings	(x-x^3)/24
{ }	curly brackets	lists, ordered pairs	ListPlot[{{1,2},{2,3},{3,4}}]

Common Error: missing brackets in algebra: x/2-x is not the same as x/(2-x).

▶ Built-in Functions

Built-in functions are functions already defined in Mathematica.

Function	Syntax	Function	Syntax	Function	Syntax
$\sin x$	Sin[x]	$\cos x$	Cos[x]	$\tan x$	Tan[x]
$\arcsin x$	ArcSin[x]	$\arccos x$	ArcCos[x]	$\arctan x$	ArcTan[x]
$\log_a x$	Log[a,x]	$\ln x$	Log[x]	e^x	Exp[x]
\sqrt{x}	Sqrt[x]	n!	n!	$\Gamma(x)$	Gamma[x]

Common Error: *Mathematica* is picky about capitalization. In particular, all built-in functions begin with a capital, so cos[x] is not the same as Cos[x].

▶Built-in Constants

Built-in constants are constants already defined in Mathematica.

Constant	π	e	i	∞
Syntax	Pi	E	Ι	Infinity

Common Error: using e instead of E.

Other constants (speed of light, Avogadro's constant, etc) are available if you load the package PhysicalConstants using the command: <<PhysicalConstants`

►Equal Signs

Syntax	Read As	Use	Example
=	set	defining variables and functions	a=3.2
:=	set delayed	defining variables and functions	a:=Pi
==	equal	equations	equation1 = $x^2-y^2==4$

Common Error: not using double equal sign == for equations.

Symbolic and Numeric Output

Mathematica works all its computations symbolically unless you tell it not to. You can tell it not to by using a decimal in a number you use, for example Pi/3.0, or you can use the command N as in N[Pi/3]. To get more decimals, use N[Pi/3,320] or SetPrecision[Pi/3,320]

► Defining Your Own Functions

You tell *Mathematica* which variables are the independent variables by using an underscore:

f[x_,t_] = Sin[t]*(Cos[k*x]-4)
g[x_] = Piecewise[{{x^2, x < -1}, {x + 2, x >= -1}}]
Common Envert forgetting the undergoere

Common Error: forgetting the underscore.

Working With Functions

Mathematical Operation		Syntax
value of function	f(3)	f[3]
decimal value of function	f(3)	f[3.0] or N[f[3]]
derivative	$\frac{d}{dx}[f(x)]$	D[f[x],x] or f'[x]
indefinite integral	$\int f(x) dx$	<pre>Integrate[f[x],x]</pre>
definite integral	$\int_{a}^{b} f(x) dx$	<pre>Integrate[f[x],{x,a,b}]</pre>
numerical integration	$\int_0^2 f(x) dx$	NIntegrate[f[x],{x,0,2}]
composition	$(f \circ g)(x) = f(g(x))$	f[g[x]]

Common Error: for indefinite integrals, Mathematica does not include a constant of integration in its answer.

Solving Equations

Syntax	Use	Example
►Solve	symbolic solution of equations	Solve[{x==y-2,x^2+y^4==4},{x,y}]
▶NSolve	decimal solution of equations	NSolve[{x==y-2,x^2+y^4==4},{x,y}]
Eliminate	eliminate a variable from a set of equations	<pre>Eliminate[{x==t^2+1,y==5/t},t]</pre>
Reduce	symbolic solution of equations, returns conditions	Reduce[$\{x+Cos[x*y]==0\},\{x, y\}$]

Reduce is very useful for trig equations. **Eliminate** is used to determine an implicit function from a parametric representation.

Plotting

I have included some useful options (PlotStyle, Joined, AspectRatio, PlotRange) in the examples below. These options can be left out to create a simple plot.

Plot Type	Example		
► plot $f(x)$	Plot[f[x], {x, -1, 5}]		
▶ plot $f(x)$ and $g(x)$	<pre>Plot[{f[x], g[x]}, {x, -1, 5}, PlotStyle -> Thick]</pre>		
plot list of data points	ListPlot[{{1,2},{2,3},{3,6}}, Joined -> True]		
implicit plot of $f(x, y) = 0$ in \mathbb{R}^2	ContourPlot[f[x,y]==0, {x,-5,5}, {y,-5,5}, AspectRatio->1]		
plot of parametric function	ParametricPlot[{f[t],g[t]},{t,0,8},PlotRange->{{-1,1},{-2,2}}]		
$x = f(t), y = g(t)$ in \mathbb{R}^2			
contour plot of $z = f(x, y)$	ContourPlot[f[x,y],{x,-2,2},{y,-2,4}, Contours->100]		
plot of $z = f(x, y)$ in \mathbb{R}^3	Plot3D[f[x,y],{x,-2,2},{y,-2,4}]		
plot of space curve	ParametricPlot3D[{f[t],g[t],h[t]},{t,-2,8}]		
$x = f(t), y = g(t), z = h(t)$ in \mathbb{R}^3			
plot of surface	ParametricPlot3D[{f[s,t],g[s,t],h[s,t]},{t,-2,8},{s,-3,9}]		
$x = f(s,t), y = g(s,t), z = h(s,t) \text{ in } \mathbb{R}^3$			
plot $f(x)$ with area between the	$Plot[f[x], \{x, -1, 3\}, Filling \rightarrow Axis]$		
curve and x -axis shaded			
plot $f(x)$ and $g(x)$ with area	Plot[{f[x], g[x]}, {x, -1, 3}, Filling -> {1}]		
between the curves shaded			
animation of	Manipulate[
$\cos(ax+b) + c$ as a, b, c vary	Plot[Cos[a*x+b]+c,{x,0,2*Pi},PlotRange->{{0,2*Pi},{-5,5}}],		
	{a, -2, 2}, {b, 0, 2*Pi}, {c, -2, 2}]		