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1. Motivation and Background 

The radiative effects of cirroform clouds are 

challenging and varied. The goal of this project is to 
extract information about cloud composition, as well 
as about the spatial and temporal distribution of 
these clouds based on photographic ice halo 
observations. Cirrus optical scattering behavior is 
heavily influenced by the types of ice particles. These 
may be present in many forms, including crystalline 
hexagonal habits in form of plates, pencils and prisms, 
hollow columns, bullets and bullet rosettes, and also 
as amorphous ice pellets, fragments, rimed crystals 
and others. If a significant fraction of pristine crystal 
habits is present, the optical scattering behavior of 
the cirrus cloud gives information about the cloud 
particle types in form of ice halos, most frequently 
appearing as a bright ring of 22° radius around sun or 
moon. Vice versa, the absence of the ice halo would 
suggest that the ice particles are of a shape and 
structure different from hexagonal plates, pencils, 
bullets or prisms (van Diedenhoven, 2014). 

The question becomes how to use ice halos to 
improve our knowledge about the composition of 
cirroform clouds and the conditions in the upper 
troposphere. It is essential to establish frequency of 
halo appearances across seasons and years, as well as 
geographically. A couple of such data collections can 
be found in the literature. The study by Sassen et al 

(Sassen et al., 2003) showed a prevalence of the 22 
halo, full in 6% and partial in 37.3% of cirrus periods, 
based on a ten-year photographic and LIDAR record 
of mid-latitude cirrus clouds. Forster et al. (Forster et 
al., 2017) used a sun-tracking camera system to 
observe ice halo details over the course of several 
months in Munich, Germany, and a multi-week 
campaign in the Netherlands in November 2014. Sky 
images have been collected for decades at several 
research facilities. We are using series of images 
produced by Total Sky Imagers (TSI) at Atmospheric 
Radiation Measurement (ARM) Climate Research 
Facilities in order to assess the presence of ice halos 
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on these sites. We have obtained long-term series of 
images from three locations: (1) Southern Great 
Plains Central Facility (SGP, 2018), (2) Eastern North 
Atlantic Graciosa Island, Azores (ENA, 2018), and (3) 
the North Slope Alaska  Facility (NSA, 2018). These 
images were taken every 30 seconds over many 
years, producing records of millions of images 
capturing the appearance of the sky throughout 
daylight hours. The TSI views the whole sky in a 
convex upward mirror, and captures it with a 
centered downward camera. These captures include 

appearances of the 22halo. Other halo features 
cannot reliably differentiated in these images, 
although occasionally one might spot a parhelion or a 
circumzenithal arc. 

We present an image-processing algorithm to 

automatically identify 22 ice halos in TSI images. The 
TSI data present as jpg images of different sizes (over 
the years) and different quality. While images from all 
three data sets were used to build and train the 
algorithm, our current results focus on the SGP 
location and the time interval between January 2013 
and April 2018.  

2. Algorithm 
 

2.1. Basic Idea 

The algorithm assigns a score to each image, 

evaluating how well it fits the description of the 

scored target listed in Table 1. The software itself can 

be found in github. (Boyd, 2018a). An extended 

description of the algorithm is under review at 

Atmospheric Measurement Techniques, manuscript 

number amt-2018-401 (Boyd et al., 2018b). 

The evaluation of the image is based on a Gaussian 

multivariate analysis of selected characteristic 

properties. For each scored target, a vector of Np 

characteristic properties of the image 



𝑋 = {𝑥𝑖}𝑖

𝑁𝑝               (1) 

is defined. The image properties are then related to 
the expected mean vector  

𝑀 = {𝜇𝑖}𝑖=1
𝑁𝑃   with  𝜇𝑖 =

1

𝑁𝑚𝑎𝑠𝑡𝑒𝑟
∑ 𝑥𝑖𝑘

𝑁𝑚𝑎𝑠𝑡𝑒𝑟
𝑘=1            (2) 

and the covariance matrix 

Σ = (𝑋 − 𝑀)(𝑋 − 𝑀)𝑇 = (
𝜎11 𝜎12 …
𝜎21 𝜎22 …
… … …

)             (3) 

To define a raw score to the image 

𝐹 = 𝐶0𝑒𝑥𝑝 (−
1

2
(𝑋𝑖𝑚𝑎𝑔𝑒 − 𝑀)

𝑇
Σ−1(𝑋𝑖𝑚𝑎𝑔𝑒 − 𝑀))         (4) 

That means, in order to score an image with respect 

to a target, one must provide M and -1.  

 

Table 1. Scored target types. 

Sky Type Scores (STS) 

CS: Cirrostratus. Muted blue, no sharp cloud 
outlines; solar position clearly visible, bright 
scattering disk or halo may be present; 
changes are gradual and slow 

PCL: Partly cloudy. Variable sky with sharply 
outlined stratocumulus or altocumulus; 
variations between sky quadrants; sun may be 
obscured; changes are abrupt and fast. 

CLD: Cloudy. Sun is obscured; low brightness; 
low blue intensity values; stratus, 
nimbostratus, altostratus, or cumulonimbus; 
changes occur slowly. 

CLR: Clear. Blue, cloud-free sky; sun clearly 
visible and no bright scattering disk around it; 
changes are slow 

N/A no data. This may occur at low sun 
positions for the bottom quadrants of the LSM, 
or due to overexposure in the near-solar region 
of the image; it’s the default at night. 

Ice Halo Score (IHS) 
An ice halo is present in one or more quadrants at 
expected positions around the sun.  

 

These are computed in an external master table from 
visually scored images. The master table is continually 
trained and expanded. We are using a spreadsheet 
for this purpose, allowing to compute means and 
inverse covariance matrices in an efficient fashion. 
Figure 1 shows a basic outline for the algorithm. 

 

2.2. Average Radial Intensity I(s) 

Image calibrations for orientation, perspective 
distortion, masks, and possible discoloration are 
performed. The calibrations are consistent over 
periods of weeks and months, and do not need to be 
adjusted for each individual image. The solar position 
is marked using geographical location and time. Then 
the Local Sky Map (LSM) is produced by rotating and 
cropping the image to a sun-centered square image, 

see Figure 2. The LSM is divided into four quadrants, 

each analyzed separately.  

 

Figure 1. The algorithm is implemented in a program 
named haloloop. The principal flow is outlined here. 

For each color channel, the radial intensity as a 
function of radial distance from the sun, I(s), is 
computed by averaging over a 4-pixel wide ribbon at 

distance s. In Figure 3, the average radial intensity for 

each of the three color channels is shown versus 
radial distance. On the left, graphs are for the halo 

images from Figure 2, on the right for the partially-

cloudy image. The bottom row of panels in Figure 3 

show the deviation of I(s) from its own running 
average (taken over 6 LSM units). One LSM unit 
corresponds roughly to an angle of 1 degree, 
however, due to some approximations made in the 
removal of the mirror distortion, this is only really 
true for zenith angles close to 45 degrees.  



The examples in Figure 3 show differences between 
halo and non-halo images. Halo images exhibit a 
maximum at 21 LSM in every color channel. The 
relative contributions of B and G are reversed 
compared to a clear sky or partially cloudy sky. The 
radial intensity gradient, measured by the slope of a 
fit line in the analysis area, is a useful indicator for sky 
type assessments. A clear sky, for example, will 
exhibit a very steep initial gradient, but then decline 
slower, dominated by the B channel. A cloudy sky 
exhibits a different color ratio, and sometimes even a 
positive radial intensity gradient. We selected 10 
properties of I(s) to assess sky type, and 31 properties 
of I(s) to assess the presence of a 22-degree halo.  

In order to assess STS, we build the vector of 
characteristic properties in Eqn. 1 using slope and 
intercept in each color channel, the variance of the 
intensity across the analysis area in each color 
channel, and the average color ratio  

𝐴𝐶𝑅 =  
𝐵2

𝐺𝑅
        (5) 

as taken across the analysis area.  

For the IHS, we add parameters that assess the 
presence of the halo intensity bump in the deviation 
of I(s) from running average, which adds 21 additional 
parameters. In addition, the resulting raw halo scores 
from Eqn. 4 are Gaussian-broadened in time to 
accommodate effects of halo persistence, and 
minimize false scores from incidental cloud 
arrangements that occasional may present a halo 
signal. The half width of the broadening is usually 
chosen to be 3 to 4 minutes. This means, halo 
appearances shorter than 3 minutes cannot be 
resolved with this approach. 

The master table for each scored image quality, 
together with mean vector (Eqn. 2) and inverse 
covariance matrix (Eqn 3) was seeded using an 
assortment of 20 images of each target type, and has 
since been continually complemented with further 
sets of properties, yielding more than 100 reference 
sets for each scored quality.  

1.1. Algorithm Output 

The algorithm produces a time-resolved data set of 
sky type and halo scores for each quadrant, and for 
the whole LSM. The four STS scores are normalized to 
100%, respectively, and can be interpreted as a 

probability. The IHS as a function of time is also 
produced. While the absolute value of IHS is arbitrary 
and dependent on the choice of pre-factor in Eqn.4 as 
well as the success of the image calibration, the 
discrimination between halo and no-halo images is 
quite clear.  

 

 

Figure 2. Two Examples of TSI images. Halo on left, partially 
cloudy on right. The transition from raw image to local sky 
map (LSM) is illustrated. The center of the bottom row 
illustrates how the LSM is divided for analysis. 

 

Figure 3.  Average radial intensity I(s) for all three color 
channels. Left and right column belong to the left and right 
images above in Figure 2. Bottom row shows the deviation 
from running average. 



Figure 4 shows an example of a single-day analysis. 

Four TSI snapshots at different times are included to 
illustrate such a time line. This particular day was 
chose for its variability. The halo is clearly detected, 
as well as its strength in terms of how closely it 
resembles the reference set in the master table at 
different times. Sky types have been correctly 
assessed. It is interesting that one can have multiple 
sky types in close resemblance, and observe their 
varying contributions along the time line. 

 

 

Figure 4. Example of a single-day analysis. This is for SGP 
March 10 2018.  

2. Performance Testing 

The algorithm was trained and tested for accuracy in 
both, STS and IHS, based on the entire SGP TSI record 
for March 2018; the month contains 44,026 images. 
We proceeded iteratively. Each iteration used the 
algorithm assignments to visually inspect selected 
segments of the image timeline and refine the master 
table. In the result, a complete visually assigned 
record for March was produced, a working master 
table had been created, and a good understanding of 
the performance and limits of the algorithm had been 

gained. In Table 2, we show the percentage of visual 

types as they are classified by the algorithm. For 
example, 97 % of all CLD images are correctly 
recognized by the algorithm, while 8 % of visual CS is 
classified as CLR.  

Table 2. STS Performance: Percentage of each visual type 
as classified by the algorithm. 

STS Visually assigned 
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% CS PCL CLD CLR 

CS 88 11 1 4 

PCL 2 87 3 2 

CLD 1 1 97 0 

CLR 8 2 0 95 

N/a 40% of all images 
 

Table 3. STS Performance: Percentage of each algorithm 
type as it corresponds to visual types. 

STS Visually assigned 
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% CS PCL CLD CLR 

CS 86 9 0 5 

PCL 3 91 3 3 

CLD 1 1 98 0 

CLR 6 1 0 93 

N/a 40% of all images 

 

Similar, in Table 3 we examine the type assessments 

by the algorithm and relate them to the visual 
inspections of the images. The algorithm performs 
extremely well for CLD and CLR. For CS and PCL, we 
find that 9% of the CS assignments would visually 
present as PCL. It is, however, necessary to note that 
visual assignments from TSI images are carrying an 
uncertainty of their own. The distinction between CLR 
and a thin CS visually can often only be made by 



inspecting an animation. In addition, a CS sky can 
present as inhomogeneous, triggering an affinity to 
PCL. Therefore, we will engage with the ceilometer 
and pulsed LIDAR records, if available, in our future 
work, to alleviate the remaining uncertainty as to sky 

type assignments. Table 4 shows a similar 

assessment for the halo recognition performance of 
the algorithm. Twelve percent of the algorithm 
assignments refer to images that do not visually show 
an ice halo. Often these are altocumulus skies, which 
are very challenging to sort out from a halo signal. The 
halo score is of low value for these images, but 
similarly low for some actual halo images. Thus, we 
cannot exclude these from the record using the IHS 
alone. The 15% of visual halo assignments that are 
missed by the algorithm often refer to images with 
low clouds, triggering disturbances in I(s) that prevent 
a correct interpretation of the halo signal.  

 

Table 4. IHS Performance. Percentage of visual type 
recognized by the algorithm (%vis), and percentage of 
algorithm types corresponding to visual types (%alg). 

IHS Visually assigned 
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 % Halo present No halo 

 %vis %alg %vis %alg 

halo 85 88 1 12 

No halo 15 1 99 99 

 

3. Findings for SGP 2011-2018 

We applied the algorithm to the TSI data from the 
Southern Great Plains ARM site, dated January 2011 
to April 2018. During this time period, we found on 
average 50 incidences of ice halos per month. These 
were not evenly distributed, but rather occurred in 
groups related to the changes in weather pattern. The 
average halo duration observed was 21 minutes, 
however, on average the maximum monthly 
persistence time was 143 min. The longest 
persistence of a 22-degree halo in this 5-year period 
was found with 428 minutes on March 7 2012, 
followed by 412 minutes on September 12 2017. 

Since sky quadrants are analyzed separately, we were 
able to estimate fractional halos versus full halos as 
well. We found full halos in 34% of all cases. Most 
commonly with 35% were three-quarter halos, 
followed by halos only in the upper two quadrants 

with 26%. The latter is particularly common during 
the winter months when the low solar position does 
not allow to reliably resolve the horizon-near portions 
of the LSM.  

We examined seasonal dependencies of the scored 
image properties. In Figure 5, the annual variation in 
dominant sky type has been summarized. Figure 6 
shows the percentage of classifiable images that also 
show a halo signal. Overall, there is a 10-15% chance 
to find a halo in the sky, maximizing in March and 
April. That surprisingly coincides with a local 
minimum in the chance for CS.  

 

Figure 5. Average Sky Type by month. The data include 
January 2011 to April 2018.  

 

Figure 6. Percentage of classifiable images that also 
show an ice halo versus month of the year. 



Figure 7 examines the relation between CS and halos. 
March and April also are the months in which CS is 
most likely to produce ice halos, in some years 
exceeding 20 % of all CS skies. That fraction has a 
minimum at the end of summer, in August. This would 
indicate that cirrostratus in March and April has a 
higher crystalline component than in other months of 
the year. CLD and CLR do not show any significant 
halo component. 

 

Figure 7.Percentage of all CS image quadrants that also 
show a halo signal. 

 

Figure 8. Percentage of Partly cloudy skies (PCL) that also 
show a halo signal. 

We find that 5 to 10 % of PCL images do show a full 
or partial halo, as indicated in Figure 8. From our 
performance testing we know that some CS is 

qualified as PCL, either due to inhomogeneities in 
the cirroform layer, or due to the presence of low-
layer stratocumulus. One should not interpret this as 
low-layer clouds generating halos. The PCL – halo 
relation shows the same annual behavior as the CS-
halo relation.  

 

4. Summary 

An algorithm for the detection of ice halos in TSI 
images has been developed and applied to the recent 
several years of the TSI record collected at the SGP 
ARM site. This algorithm was tested and trained on a 
complete month’s record, taken at the SGP site in 
March 2018. 

The algorithm is flexible and trainable, and can be 
expanded for other target features. Sky type and ice 
halo scores are assigned based on the behavior of the 
radial brightness gradient in the near-solar region of 
an image. Tests show that the scoring of sky type and 
halo presence is about 90% reliable.  

Data on the annual variation in sky type and annual 
distribution of ice halo appearances have been 
presented. In order for an ice halo to form, smooth 
crystal habit must be represented in the atmosphere. 
We find that this crystalline habit peaks during March 
and April for the SGP site.  

Further work will address: 

 An analysis of the complete SGP record, as 
well as NSA, and ENA records. We will find 
insight into temporal and geographical 
distributions of ice halos and their relation to 
cirroform clouds. 

 Such an analysis will be significantly 
strengthened with the inclusion of 
ceilometer and Lidar data, depending on 
availability. 

 The usefulness of other radiative 
measurements for the analysis will be 
explored. 
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