CSci 1302 Assignment 12

Due Friday, May 9th in class

Problem 1 (6 points). You are given three sets, $A=\{a, b, c\}, B=\{1,2,3\}$, and $C=\{$ red, white, blue $\}$, and the following relations:

- $R \subseteq A \times B=\{(a, 1),(b, 1),(c, 3)\}$,
- $S \subseteq B \times C=\{(1$, red $),(2$, blue $),(3$, red $)\}$,
- $T \subseteq C \times A=\{($ red,$a),($ white,$c)\}$.

For each of the following operations compute the result if the operation makes sense, or, if it doesn't make sense, please explain why.

1. $R ; S$
2. $S ; T$
3. $R ; R^{-1}$
4. $R^{-1} ; R$
5. $R^{-1} ; T^{-1}$
6. $R ; T$

Problem 2 (6 points). Exercises 17, 19, 22 p. 593.

Problem 3 (4 points). Exercises 4, 11 p. 608.

Problem 4 (5 points) You are given relation $R=\{(a, b),(b, c),(c, b),(d, c)\}$ on the universal set $U=\{a, b, c, d, e\}$. Please construct the following:

- the reflexive closure of R.
- the symmetric closure of R.
- the transitive closure of R.
- the "equivalence closure" of R (i.e. the smallest equivalence relation that contains R).

You may list pairs included in the resulting relations or draw the realtions, each as a separate diagram.

Problem 5 (2 points). Is symmetric closure of a transitive relation transitive? If yes, please prove it. If not, please give a counterexample.

Problem 6 (3 points). Exercises 6, 7, 9 p. 647.

Problem 7 (6 points). Exercise 2 p. 680.

Problem 8 (2 points). Exercises 3b, 5b p. 696

Problem 9 (6 points). Exercise 19 p. 696.
That's all, folks!

