CSci 1302 Assignment 6

Due Fri., March 7th in class

Problem 1 (10 points). Consider a set C of n software development companies and a set P of n programmers looking for jobs. Each company ranks all of the programmers in order of preference for hiring (no two programmers get the same ranking), with 1 being the highest and n being the lowest ranking. The ranking is given by the function r so that, for instance, $r\left(c_{1}, p_{1}\right)=3$ means that the company c_{1} ranks the programmer p_{1} as the third from the top.

Likewise, each programmer ranks the companies according to his/her preferences (no two companies get the same rankings). The ranking is given by the function r^{\prime}. As an example, $r^{\prime}\left(p_{1}, c_{1}\right)=2$ means that the programmer p_{1} ranks the company c_{1} as his/her second choice.

Use quantified formulas to define the preference systems described below. Use letters c, a, b to denote companies and letters p, q, r to denote programmers.

As an example, consider: there is at least one programmer who is the first choice in his/her first choice company. Solution: $\exists p \exists c(\forall q \cdot r(c, q) \geq r(c, p)) \wedge$ $\left(\forall a . r^{\prime}(p, a) \geq r^{\prime}(p, c)\right)$ (note that higher ranking numbers indicate lower preference!). You can also express this easier using the fact that the highest ranking is 1 as $\exists p \exists c r(c, p)=1 \wedge r^{\prime}(p, c)=1$.

Express the following properties using quantifiers:

1. All companies rank all of the programmers in the same order.
2. No company gives the highest preference to a programmer who selected that company as their first choice.
3. No two programmers have the same first choice of a company.
4. If all programmers get their worst choice company, some companies will end up with someone who is their first choice.
5. There is a company that, given a choice between programmers p and q, would prefer the one who ranks it lower than does the other programmer.

Problem 2 (6 points). Exercise 40c, d, f, g, h, i p. 110.
Problem 3 (6 points). Exercises 54, 55, 56 p. 110.
Problem 4 (28 points). Prove the following arguments. The domain for all problems is \mathbb{Z} - the set of all integers.
A. 1. $\forall x \cdot x \cdot 1=x$

$$
\therefore \forall x . \exists y . x \cdot y=x
$$

B. 1. $\forall x .(x \neq 1 \wedge x \neq 0) \rightarrow x^{2}>x$
2. $\exists y . y \neq 1 \wedge y \neq 0$

$$
\therefore \exists z \cdot z^{2}>z
$$

Hint for problem C: when introducing the existential quantifier, replace only one occurrence of the constant by a variable, but not the other:
C. 1. $\forall z . i s D i v i \operatorname{sible}(z, 1) \wedge i s D i v i s i b l e(z, z)$
$\therefore \exists y . i s D i v i s i b l e(y, 33)$
D. 1. $\forall x . \forall y .(x>y) \vee(y>x) \vee(x=y)$
2. $\sim(5>5)$
$\therefore 5=5$
E. 1. $\forall x \cdot \forall y \cdot \exists z \cdot x+y=z$
$\therefore \forall x . \exists z \cdot x+x=z$
F. 1. $\quad \forall x . \operatorname{isPrime}(x) \leftrightarrow(\forall y . \operatorname{isDivisible}(x, y) \rightarrow(y=1 \vee y=x))$
2. isDivisible $(9,3)$
3. $3 \neq 1 \wedge 3 \neq 9$
$\therefore \sim$ isPrime (9)
G. 1. $\forall x \cdot \operatorname{odd}(x) \leftrightarrow(\sim \exists y \cdot x=2 \cdot y)$
$4=2 \cdot 2$
$\therefore \sim \operatorname{odd}(4)$

