CSci 1302 Example of a proof in predicate logic

Below are two proofs of the same mathematical argument: if every number has the next number and the next number of x is greater than x, then there is no greatest number. Note that we need to add to our list of assumptions the property that if x is greater than y, then y is not greater than x. Without this assumption the proof does not go through.

There are two versions of the proof. The first one uses the theorems of predicate logic ${ }^{\sim} \exists x \cdot p(x) \equiv \forall x . \sim p(x)$ and ${ }^{\sim} \forall x \cdot p(x) \equiv \exists x . \sim^{\sim} p(x)$. The other one is a proof by contradiction.

1. $\quad \forall x \cdot \exists y \cdot y=x+1$
2. $\quad \forall x \cdot \forall y \cdot y=x+1 \rightarrow(y>x)$
3. $\quad \forall x \cdot \forall y \cdot(x>y) \rightarrow \sim(y>x)$

$$
\therefore \sim \exists x \forall y \cdot x>y
$$

4. $\exists y \cdot y\left(x_{\forall}\right)=x_{\forall}+1 \quad 1, \forall_{-} E($ gen $), y$ depends on x_{\forall}
5. $y\left(x_{\forall}\right)=x_{\forall}+1$ 4, $\exists_{-} E$
6. $y\left(x_{\forall}\right)=x_{\forall}+1 \rightarrow\left(y_{\exists}\left(x_{\forall}\right)>x_{\forall}\right)$ $2, \forall_{-} E($ gen, unknown $)$ (x_{\forall} appeared before)
7. $\quad y_{\exists}\left(x_{\forall}\right)>x_{\forall}$ 5, 6, Modus Ponens
8. $\quad\left(y_{\exists}\left(x_{\forall}\right)>x_{\forall}\right) \rightarrow^{\sim}\left(x_{\forall}>y_{\exists}\left(x_{\forall}\right)\right)$
$3, \forall$ _ E (unknown) twice
9. $\sim\left(x_{\forall}>y_{\exists}\left(x_{\forall}\right)\right)$

7, 8, Modus Ponens
10. $\exists y . \sim\left(x_{\forall}>y\right)$

9, ヨ_I
11. $\forall x \cdot \exists y . \sim(x>y)$
$10, \forall_{-} I$
12. $\forall x . \sim \forall y \cdot x>y$
$11, \sim x \cdot p(x) \equiv \exists x \cdot \sim p(x)$
13. $\sim_{\exists} \exists x . \forall y . x>y$
$12, \sim \exists x \cdot p(x) \equiv \forall x . \sim p(x)$
Note that step 10 introduces \exists quantifier for a variable y_{\exists} which depends on x_{\forall}. This is OK. However, introducing the \forall quantifier would not have been allowed.

The same example can be done using a proof by contradiction: assume that there is the greatest number, and find a contradiction.

