CSci 1302 Example of a proof in predicate logic

Below are two proofs of the same mathematical argument: if every number has the next number and the next number of x is greater than x, then there is no greatest number. Note that we need to add to our list of assumptions the property that if x is greater than y, then y is not greater than x. Without this assumption the proof does not go through.

There are two versions of the proof. The first one uses the theorems of predicate logic $\exists x.p(x) \equiv \forall x. p(x)$ and $\forall x.p(x) \equiv \exists x. p(x)$. The other one is a proof by contradiction.

1. $\forall x. \exists y. y = x + 1$ 2. $\forall x. \forall y. y = x + 1 \rightarrow (y > x)$ $\forall x. \forall y. (x > y) \to \widetilde{\ } (y > x)$ 3. $\therefore ~ \exists x \forall y.x > y$ $\exists y. y(x_{\forall}) = x_{\forall} + 1$ 4. $1, \forall_{-}E(gen), y \text{ depends on } x_{\forall}$ 5. $y(x_\forall) = x_\forall + 1$ $4, \exists_-E$ 6. $y(x_{\forall}) = x_{\forall} + 1 \to (y_{\exists}(x_{\forall}) > x_{\forall})$ $2, \forall_{-}E(gen, unknown)$ $(x_{\forall} \text{ appeared before})$ 7. 5, 6, Modus Ponens $y_{\exists}(x_{\forall}) > x_{\forall}$ $(y_{\exists}(x_{\forall}) > x_{\forall}) \to \widetilde{}(x_{\forall} > y_{\exists}(x_{\forall}))$ $3, \forall E(unknown)$ twice 8. 7,8, Modus Ponens 9. $\tilde{}(x_{\forall} > y_{\exists}(x_{\forall}))$ 10. $\exists y. ~(x_\forall > y)$ $9, \exists I$ $10, \forall I$ 11. $\forall x. \exists y. \widetilde{\ } (x > y)$ 12. $\forall x. \forall y. x > y$ $11, \quad \forall x. p(x) \equiv \exists x. \quad p(x)$ 13. $\exists x. \forall y. x > y$ $12, ~\exists x.p(x) \equiv \forall x.~p(x)$

Note that step 10 introduces \exists quantifier for a variable y_{\exists} which depends on x_{\forall} . This is OK. However, introducing the \forall quantifier would not have been allowed.

The same example can be done using a proof by contradiction: assume that there is the greatest number, and find a contradiction.

1.	$\forall x. \exists y. y = x + 1$	Assumption
2.	$\forall x. \forall y. y = x + 1 \to y > x$	Assumption
3.	$\forall x. \forall y. (x > y) \to \widetilde{}(y < x)$	Assumption
	$\overline{\neg \exists x \forall y. x > y}$	
4.	$\exists x. \forall y. x > y$	Assumption(there is the largest number)
5.	$\forall y.x_\exists > y$	$4, \existsE$
6.	$\exists y.y = x_{\exists} + 1$	$1, \forall_{-}E(unknown)$
7.	$y_{\exists} = x_{\exists} + 1$	$6, \existsE$
8.	$y_{\exists} = x_{\exists} + 1 \to (y_{\exists} > x_{\exists})$	$7, \forall E(unknown)$ twice
9.	$y_{\exists} > x_{\exists}$	7,8, Modus Ponens
10.	$(y_\exists > x_\exists) \to (x_\exists > y_\exists)$	$3, \forall E(unknown)$ twice
11.	$\widetilde{(x_{\exists} > y_{\exists})}$	9,10, Modus Ponens
12.	$x_{\exists} > y_{\exists}$	$5, \forall_{-}E(unknown)$
13.	$\tilde{\exists} x. \forall y. x > y$	4-12, Contradiction lines 11, 12