CSci 1302 Assignment 8

Due Friday, April 15th in class

Problem 1 (4 points). Fibonacci numbers are defined as $F_{0}=0, F_{1}=1$, and for all $k \geq 2 F_{k}=F_{k-1}+F_{k-2}$. Use strong induction to prove the following property of Fibonacci numbers: $F_{n+m-2}=F_{n} F_{m-1}+F_{n-1} F_{m-2}$. Here $n \geq$ $2, m \geq 2$. Please point out the part of the proof where you had to use strong induction.

Hint: you should do induction on n only and assume that m is fixed. The other way around (induction on m with n fixed) should work as well, but you cannot do induction on both.

Problem 2 (9 points). Exercises 5, 7 p. 253, exercise 11 p. 254. Exercise 11 may have a typo, depending on the edition. There should be a line
y := y - 1
after
then do product := product +x .
In an incorrect edition the line may be missing entirely or may use $y_{\text {new }}$ and $y_{\text {old }}$ instead of y. In the latter case just ignore the subscripts and replace $=$ with :=.

