CSci 1302 Assignment 12

Due Friday, May 4th in class

Problem 1 (20 points). Exercises 9, 13 (hint: use the Division by Cases rule - see p. 19), 14, 24, 29, 33 pp. 281-282.

Use the proof methods that we used in class, NOT the element argument given in the textbook.

Problem 2 (6 points). Exercises 17, 19, 22 p. 593.
Problem 3 (2 points). Exercises 4 p. 608.

Problem 4 (6 points). You are given three sets, $A=\{a, b, c\}, B=\{1,2,3\}$, and $C=\{$ red, white, blue $\}$, and the following relations:

- $R \subseteq A \times B=\{(a, 1),(b, 1),(c, 3)\}$,
- $S \subseteq B \times C=\{(1$, red $),(2$, blue $),(3$, red $)\}$,
- $T \subseteq C \times A=\{($ red,$a),($ white,$c)\}$.

For each of the following operations compute the result if the operation makes sense, or, if it doesn't make sense, please explain why.

1. $R ; S$
2. $S ; T$
3. $R ; R^{-1}$
4. $R^{-1} ; R$
5. $R^{-1} ; T^{-1}$
6. $R ; T$

Problem 5 (5 points) You are given relation $R=\{(a, b),(b, c),(c, b),(d, c)\}$ on the universal set $U=\{a, b, c, d, e\}$. Please construct the following:

- the reflexive closure of R.
- the symmetric closure of R.
- the transitive closure of R.
- the "equivalence closure" of R (i.e. the smallest equivalence relation that contains R).

You may list pairs included in the resulting relations or draw the relations, each as a separate diagram.

That's all, folks!

