
CSci 4651 Fall 2008

Handout 1: Call-by-name vs. call-by-value λ-calculus (a brief
overview)

Notations: Beta-reduction for the call-by-name λ-calculus is marked by βN ,
beta-reduction for the call-by-value λ-calculus is marked by βV .

Common definitions. Both call-by-name and call-by-value λ-calculi con-
sist of terms defined as follows:

M → x | n | λx.M |M1M2,

where x denotes a variable, n denotes a number. λx.M is called a lambda-
abstraction and denotes a function with the body M and the parameter x.
M1M2 denotes an application, for instance (λx.x)5 denotes an application of
an identity function (a function that just returns the parameter without doing
anything to it) to a number 5. Even though arithmetic operations, such as +,−,
etc. are not included in the definition of terms, I will use these operations in
examples.

Free and bound variables, substitution, and alpha-equivalence are defined
the same way for both calculi. See the textbook for more details.

Both calculi evaluate λ-terms via β-reduction. However, this reduction is
defined differently for the two calculi.

Call-by-name λ-calculus. The basic β-reduction in the call-by-name cal-
culus is defined as follows:

(λx.M)N
βN−−−−→

simple

[
N

x

]
M,

where [Nx]M denotes the result of replacing all free occurrences of x in M by
N .

In order to reason about program transformations we extend this relation so
that β-reduction can be performed anywhere in a λ-term (i.e. in any subterm).
The complete β-reduction is defined as follows:

M
βN−−→ N if M

βN−−−−→
simple

N , or

if M = λx.M1, N = λx.N1, and M1
βN−−→ N1, or

if M = M1M2, N = N1N2, and M1
βN−−→ N1, M2 = N2, or

if M = M1M2, N = N1N2, and M2
βN−−→ N2, M1 = N1

Call-by-value λ-calculus. The basic β-reduction in the call-by-value cal-
culus requires that the argument is evaluated (i.e. is a value) before it is sub-
stituted into the function:

(λx.M)V
βV−−−−→

simple

[
V

x

]
M,

where a value is either a variable, or a number, or a lambda-abstraction (i.e. a
function):

V → x | n | λx.M

1

For instance, y, 5, λx.x, λx.2 + 3 are all values, but 3 + 4, x ∗ y, and (λx.x)5 are
not.

The complete β-reduction is defined exactly as in the call-by-name λ-calculus,
but uses

βV−−−−→
simple

instead of
βN−−−−→

simple
in the base case.

M
βV−−→ N if M

βV−−−−→
simple

N , or

if M = λx.M1, N = λx.N1, and M1
βV−−→ N1, or

if M = M1M2, N = N1N2, and M1
βV−−→ N1, M2 = N2, or

if M = M1M2, N = N1N2, and M2
βV−−→ N2, M1 = N1

Difference in the order of evaluation. The call-by-name λ-calculus
substitutes a parameter into the body of the function without evaluating it,
the call-by-value λ-calculus requires that the parameter is evaluated to a value
before it gets substituted. For instance,

(λx.x)((λy.y)(λz.z))
βN−−→ (λy.y)(λz.z)

βN−−→ λz.z

(λx.x)((λy.y)(λz.z))
βV−−→ (λx.x)(λz.z)

βV−−→ λz.z,

The underlining shows which part of the term gets evaluated.
Note that the result of the evaluation is the same in both calculi, but the

order of evaluation is different.
In some cases the behavior of the same term may be different in the call-by-

value and the call-by-name λ-calculi. Before we look at an example, consider
the following term:

(λx.xx)(λx.xx)
βN−−→ (λx.xx)(λx.xx)

βN−−→ . . .

As you can see, this terms evaluates to itself in the call-by-name λ-calculus.
Exercise: Check that the above term evaluates to itself in the call-by-value

λ-calculus as well.
Since the term always evaluates to itself, the evaluation will never stop.

Such terms are called diverging terms. This particular one is often denoted by
Ω (capital greek letter omega).

The following term has different behavior in the two calculi:

(λx.5)Ω
βN−−→ 5

(λx.5)Ω
βV−−→ (λx.5)Ω

βV−−→ . . .

In the call-by-name evaluation of (λx.5)((λx.xx)(λx.xx)) the diverging term
gets replaced for all free occurrences of x in the body of λx.5. Since the body of
this function is just 5 (i.e. it doesn’t have any free occurrences of x), the whole
term immediately evaluates to 5.

In the call-by-value evaluation we have to evaluate the parameter first, since,
as it is, the parameter is not a value. An attempt to evaluate the parameter

2

(λx.xx)(λx.xx) leads to the same term. Therefore the evaluation of the parame-
ter will never stop, and the evaluation of the whole term (λx.5)((λx.xx)(λx.xx))
goes on forever.

Relation between the two λ-calculi. The following results about the
differences between the call-by-name and the call-by-value evaluation have been
proven:

1. If both the call-by-value and the call-by-name evaluation of a term M
stop, then the results of such evaluation are the same.

2. If a term M reaches a normal form (a term that cannot be reduced any
further) in the call-by-value λ-calculus, then it reaches a normal form in
the call-by-name λ-calculus (but not the other way around, as we have
seen in the previous example).

Another way of formulating the first property is: “If a term M reaches a normal
form in both the call-by-name and the call-by-value λ-calculi, then these normal
forms are exactly the same.”

Notice that Scheme is evaluated according to the call-by-value λ-calculus,
not the call-by-name.

Confluence. Both λ-calculi have the confluence property. I will formulate
this property for the call-by-name λ-calculus, you can rewrite it for the call-by-
value λ-calculus by replacing

βN−−→ by
βV−−→. Notice a slight difference in definition

of confluence here and in the textbook.
Confluence of the call-by-name λ-calculus. If M evaluates to M1 in n1 ≥ 0

steps of
βN−−→ and M evaluates to M2 in n2 ≥ 0 steps of

βN−−→, then there exists a
term N such that M1 evaluates to N in n3 ≥ 0 steps of

βN−−→ and M2 evaluates
to N in n4 ≥ 0 steps of

βN−−→.
Example: consider the following two different β-reductions from the same

term M :

M = (λx.2 + 3)((λy.y)(λz.z))
βN−−→ (λx.5)((λy.y)(λz.z)) = M1,

M = (λx.2 + 3)((λy.y)(λz.z))
βN−−→ (λx.2 + 3)(λz.z) = M2,

We can reduce M1 and M2 to the same term N as follows:

M1 = (λx.5)((λy.y)(λz.z))
βN−−→ (λx.5)(λz.z) = N

M2 = (λx.2 + 3)(λz.z)
βN−−→ (λx.5)(λz.z) = N.

As in the previous example, the part of the term that gets reduced is underlined.
Efficiency vs. safety. We have already shown that the call-by-name λ-

calculus is “safer”: a program might diverge (i.e. go into an infinite loop) in the
call-by-value calculus when it reaches a normal form in the call-by-name.

However, the call-by-value calculus avoids unnecessary repetition of work.
Consider the following example:

(λx.x ∗ x)(2 + 3)
βN−−→ (2 + 3) ∗ (2 + 3)

βN−−→ 5 ∗ (2 + 3)
βN−−→ 5 ∗ 5

βN−−→ 25.

(λx.x ∗ x)(2 + 3)
βV−−→ (λx.x ∗ x)5

βV−−→ 5 ∗ 5
βV−−→ 25.

3

There are two occurrences of x in λx.x ∗ x. If we evaluate 2 + 3 before the
substitution (as in call-by-value), then we only need to evaluate it once. If we
substitute 2 + 3 without evaluating it first (as in call-by-name), then we need to
evaluate both copies of it later, so we end up doing more computation. Therefore
call-by-value is generally a more efficient evaluation model.

Exercise: there are cases, however, when call-by-value does more work than
call-by-name. What are these cases? Why is this not a significant issue?

4

