
CSci 4651 Fall 2008
Problem Set 2: Functional programming (Scheme). Due Wedn.

Sept. 17 at 1pm (electronically)

Problem 1 (30 points). Scheme allows a programmer to write very general
functions that can be instantiated to perform a variety of tasks. Below is a func-
tion traverse that allows working with lists in a very general way. traverse
returns a function that traverses a list and performs a specified task. The task
depends on the parameters passed to traverse.

Given appropriate parameters, traverse can generate a mapping function
(a function that modifies all elements of a list in a certain way), a filter (creating
a new list that contains only the elements of the given list that satisfy a certain
condition), and functions for many other tasks on lists. Below is definition of
traverse:

(define traverse (lambda (combine do seed)
(lambda (x)
(cond ((eq? x ’()) seed)
(#t (combine (do (car x))

((traverse combine do seed) (cdr x))))))))

The three parameters of traverse are as follows:

• combine is a function that combines the result for one element with the
result for the rest of the list,

• do is a function that performs the specified action on an element, and

• seed is the result for an empty list.

Example: the function mapsquare below is defined via traverse. Given a
list of integers, it creates a list of squares of these integers:

> (define mapsquare (traverse cons (lambda (x) (* x x)) ’()))
> (mapsquare ’(1 -2 3))
(1 4 9)

Question 1. Using traverse, define and test the following functions:

1. sumlist to compute the sum of all the elements of an integer list.

2. count to count the number of elements in a list (make sure to test this
function on a list of non-integers).

3. remove5 to remove all 5s from a list of integers.

4. reverse to reverse a list.

You may define other functions to solve the problem. Submit your code, includ-
ing all test data, electronically.

1



Question 2. Write a function deeptraverse which is analogous to traverse,
but works on lists of lists (of arbitrary level of nesting). For instance, you should
be able to use deeptraverse like this:

> (define deepmapsquare (deeptraverse cons (lambda (x) (* x x)) ’()))
> (deepmapsquare ’(1 () (3 (-2 5))))
(1 () (9 (4 25)))

The function list? which returns #t if the argument is a list and #f
otherwise might be helpful for this task.

Test your solution carefully to make sure that it works for various kinds of
nested lists.

Question 3. Using deeptraverse from Question 2, define the following
functions:

1. deepsumlist to compute the sum of all the elements of a list of lists.

2. deepreverse to reverse every list in a list of lists. For example,

> (deepreverse ’(1 () (3 (-2 5))))
(((5 -2) 3) () 1)

3. flatten to “flatten” a list of lists, i.e. to put all of its elements in a single
list. For instance:
> (flatten ’(1 () (3 (-2 5))))
(1 3 -2 5)

Note: flatten must preserve the order of the elements.

Problem 2 (5 points). Exercise 3.1 p. 40.
Problem 3 (6 points). Exercise 3.2 p. 40-41, parts a,b.

2


