
CSci 4651 Fall 2008
Problem Set 8: Data Abstraction; Object-Oriented and Generic

Programming.
Due Friday, November 14

Problem 1 (8 points). Finish and submit the ML exceptions lab (a part of
Monday, November 3rd class).

Problem 2 (32 points, Work in pairs). For this problem you need to
write two different implementations of multisets (sets that can have repeated
elements). You also need to write an interface for multisets.

Background on multisets. A multiset (also known as a bag) is a set that
may contain the same element more than once. For instance, the multiset
M1 = {a, b, b} has one copy of a and two copies of b. The order in which
elements appear in a multiset does not matter.

The number of times an element appears in a multiset is called its multi-
plicity, denoted by m(). For instance, in the multiset M1 above m(a) = 1,
m(b) = 2. The set of all elements that appear in a multiset is called the under-
lying set. For instance, the underlying set of M1 is {a, b} (this is just a regular
set, so each element appears once there).

The class structure. You need to write two generic implementations of mul-
tisets: MultisetElements<T> and MultisetMultiplicity<T>, where T is the
type of the elements. The classes must implement an interface Multiset<T>.

Below is the list of classes and methods that you need to implement:

• MultisetElements<T> that uses an array or a list or a vector to store the
elements. A duplicated element appears several times on this list.

• MultisetMultiplicity<T> stores each element only once and stores mul-
tiplicities for each element occurring in the multiset. You may define an
inner class to store an element and its multiplicity or you may store multi-
plicities separately from elements (in a separate array or a list), whatever
is more convenient.

• Multiset<T> - a Java interface that the client programs will use to refer
to multisets. The interface mandates the following methods:

1. void add(T c) - adds c to the multiset.

2. int multiplicity(T c) - returns the multiplicity of c (i.e. the num-
ber of times c occurs in the multiset). Returns 0 if c is not in the
multiset.

3. Multiset<T> union(Multiset<T> ms) - returns the union of this
multiset and ms. The union of two multisets M1 and M2 is defined
as a multiset M3 with the underlying set A1 ∪A2 (where A1 and A2

1



are the underlying sets of M1 and M2, respectively), and m3(a) =
max(m1(a), m2(a)). For instance, {a, b, b, c} ∪ {a, c} = {a, b, b, c}
(note that there is only one a in the result).
The type of the returned multiset is the same as the type of this
multiset.
The union method should access the other set (the one given as
the parameter) through the interface since you don’t know what
its implementation class is. However, as an extra credit (up to
10 points) you can write an implementation that checks if it is
of the same class as your class and if it is, access the elements of
it directly. for instance, the union method of MultisetElements
should check if the parameter is an instance of MultisetElements
(using the instanceof operator), and if it is, typecast it to the
MultisetElements type and access its list of elements directly. To
get full credit for this part, implement the three methods union,
intersection, and isSubset for both Multiset classes in this man-
ner.

4. Multiset<T> intersect(Multiset<T> ms) returns the intersection
of this multiset and ms. The union of two multisets M1 and M2 is
defined as a multiset M3 with the underlying set A1 ∩ A2 (where
A1 and A2 are the underlying sets of M1 and M2, respectively), and
m3(a) = min(m1(a), m2(a)). For instance, {a, b, b}∩{a, b, c} = {a, b}
The type of the returned multiset is the same as the type of this
multiset.

5. boolean isSubset(Multiset<T> ms) - returns true if this multiset
is a subset of ms, false otherwise.

6. T [] getElements() that returns all elements of the multiset as an
array (in any order), each element appearing only once (no dupli-
cates).

In addition the two implementation classes may provide a constructor to create
an empty multiset.

Usage and testing. Write a main method or a JUnit test class to test that
the methods union, intersect, and isSubset work correctly in all 4 possible
cases:

1. When called on MultisetElements with a MultisetElements parameter,

2. When called on MultisetElements with a MultisetMultiplicity pa-
rameter,

3. When called on MultisetMultiplicity with a MultisetElements pa-
rameter, and

4. When called on MultisetMultiplicity with a MultisetMultiplicity
parameter.

2



Also make sure that you can create multisets of different types (say, Integer and
String).

Note that the constructors cannot be called through the interface, so they
have to be called in the testing code explicitly, thus breaking encapsulation.
There are ways to hide constructors from a client, but they are not perfect and
not required here.

3


