CSci 4651 Spring 2006
Problem Set 7: Storage management.
Due Monday, April 10

IMPORTANT, please read before you start working on the prob-
lems: This problem set uses Java syntax for convenience. However, this is
NOT Java code. Read each problem carefully to understand which model you
are working in (pass-by-value vs. pass-by-reference, static vs. dynamic scope
rules, etc.). Assume that all code given below is syntactically correct and does
not cause compilation error. Assume that print(¢‘x = ’’ + x) is a printing
command which works like System.out.println(‘‘x = °’ + x) in Java for
all types of variables used in this problem set.

Problem 1. Consider the following code (the lines are numbered for easy
reference):

1. int x = 3;

2. A

3. int y = 5 + x;

4. {

5. int x = 2 + y;
6. b

7. X =7y;

8. }

Question 1. Draw the program stack right after line 5 gets executed.
Question 2. What is the final value of the global x (the one defined on line 1)
in this program fragment?

Question 3. Consider two variable declarations: the one on line 1 and the
one on line 3. Which lines of the code constitute the scope of each of these
declarations?

Question 4. Which lines constitute the lifetime of each of the declarations in
Question 3?7

Problem 2. Consider the call £(2, -1) to the following function:

int £ (int x, int y) {
int z = 0;
int w = x * Xx;
if (y < 0) {
int z = -w;
print("z = " + 2);
}

return z;

Question 1. Draw the program stack at the point right after the line

int z = -w;
is executed.
Question 2. What will be printed by the print statement? What will be the
value returned by the function? Explain your answers using the stack diagram
from Question 1.

Problem 3. Recall that Fibonacci numbers are defined the following way:
FO = O,Fl =]-aFn = I'n—1 +Fn_2 for n Z 2.

Question 1. Consider the following recursive function which computes the n-th
Fibonacci number:

int fib (int n) {

if (n == 0) return 0;

if (n == 1) return 1;

return fib(n-1) + fib(n - 2);
}

Suppose a program computes £ib(3). The program will start the computation
by pushing the activation record for £ib(3) on the stack. Then £ib(2) will be
called from £ib(3), and its activation record will be pushed on the stack:

push f£ib(3)
push fib(2)

Continue the sequence until the return of £ib(3) (so that the last stack opera-
tion is pop £ib(3)).

How many activation records fib are generated for this computation? What

is the maximum number of these activation records that resides on the stack
simultaneously during this computation?
Question 2. Write the tail-recursive version of £ib , assuming that £ibTail (3,
0, 1) computes F3. The function declaration is given below, you just need to
fill in the code. Note that the functions in this and the previous question are
written in Java, so you can test them.

int fibTail (int n, int f1, int £2) {

¥

Question 3. Assuming that no optimization has been performed, write down
the sequence of push/pop operations on the program stack for the tail-recursive
function in Question 2 in computation of F3. How many activation records for
fibTail were generated in this computation? How many of them (maximum)
resided on the stack simultaneously?

Question 4. Describe how a program using the tail-recursive function may be
optimized. Explain why the optimized program is more efficient (what overhead
has been eliminated by the optimization?).

Problem 4. Write the following OCaml functions so that they are tail-recursive.
You may add extra parameters as needed. Show the initial values of all addi-
tional parameters and the test cases for the functions.

¢ a function to find the sum of all elements of a list of integers.
e a function that reverses a list (of any type).

Recall that if a function takes two (or more) parameters, you can use “match
.. with” syntax to do pattern matching on one of them:

let £ list x = match list with

n->...

| y::ys => ...

Problem 5. Consider the following function. Notice that the first parameter
is passed by reference, and the second one is passed by value.

int f(int &n, int m) {
n=mn+1;
m=m+ 1;
return n + m;

}

Question 1. Which of the following are valid calls to this functions? Assume
that all variables used below are of type int and A is an array of ints, and all
elements of the array referenced below are within the array boundary. Explain
your answers briefly.

e f(x + 1, 5)

o f(A[i+1], A[iD)
o £(2, 3)

o f(x, f(x, y))

Question 2. For the following function call please draw the function stack
right after f was called and right before f returns. What will be printed by the
program? Justify your answer using the stack diagram.

. main (...)
int x = 2;

int y = 0;
y = £(x, x);
print x;
print y;

Problem 6. Consider the following program, where main is the first function
in program execution. Parameters are passed by value.

int x = 2;
int y = 3;

void f(int n) {
X =X + n;
y=Yy - n;
}

void main () {
int x = 1;

£(1);

{
int y = 5;
£(x);

}

}

Question 1. Assuming dynamic scope rules, draw the program stack at two
points in execution: right before the call £ (1) returns and right before the call
f(x) returns. Show values of all variables in the stack pictures.

Note that for the second function call the stack will have both kinds of
blocks: in-line blocks and those associated with a function.
Question 2. What are the final values of global x and y in the case of dynamic
scope rules? Use the stack pictures to explain your answer.
Questions 3 and 4. The same as 1 and 2, but for static scope rules.

Problem 7. Consider the following program where main is the first function
in program execution. Assume the static scope rules. int -> int is the type
of functions from an integer to another integer.

int x = 0;

int f(int a) {
if (a == 1) return x;
else {
X =x + a;
return f(a - 1);

¥

void g (int -> int h) {
int x = b;
print (h(2));

}

void main () {
g(f);
}

Question 1. Note that f is recursive. Draw the program stack and function
closures when all activation records for f are pushed on the stack.

Question 2. What is going to be printed in the program? Use the stack picture
to explain your answer.

Problem 8. Assume the static scope rules and notations as in the previous
problem. Consider the following code fragment, where f returns a function g.
The function type void -> void means that the function takes no parameters
and does not return a value.

void -> void £ () {

int x = 0;

return (void gO) { x=x+ 1; });
}
void main () {

void -> void h = £();

h(Q);

void -> void j = £(0);

jO;

O 00N O WN -

10. %

Draw the program stack and all the function closures at the following points of
the program execution:

1. Right before line 7 is executed.

2. Right after line 7 is executed.
3. Right after line 8 is executed.
4. Right after line 9 is executed.

Show the values of all variables.

Problem 9. Exercise 8.5 p. 230. You may use another example of a tail-
recursive function that throws (or raises) an exception if you prefer.

Problem 10. Exercise 8.7 p. 230. Assume that the programmer must explic-
itly allocate memory on the heap using a memory allocation function, such as
malloc(n), where n is the number of bytes. The command returns a pointer
to the allocated memory. The only way to deallocate the memory is to use
the function free(p), where p is the pointer pointing to a memory segment
allocated by malloc.

