What Macros Are and How to Write Correct Ones

Brian Goslinga
University of Minnesota, Morris
600 E. 4th Street
Morris, Minnesota 56267
gosli008@morris.umn.edu

ABSTRACT

Macros are a powerful programming construct found in some
programming languages. Macros can be thought of a way
to define an abbreviation for some source code by providing
a program that will take the abbreviated source code and
return the unabbreviated version of it. In essence, macros
enable the extension of the programming language by the
programmer, thus allowing for compact programs.

Although very powerful, macros can introduce subtle and
hard to find errors in programs if the macro is not written
correctly. Some programming languages provide a hygienic
macro system to ensure that macros written in that pro-
gramming language do not result in these sort of errors.
In a programming language with a hygienic macro system,
macros become a reliable part of the language.

Macros in C, Common Lisp, and Scheme will be explored,
focusing on issues relating to the correctness of macros in
each language. To demonstrate macros solving a problem, a
Project Euler problem will be solved with the help of macros.
Finally, some current work relating to hygienic macros in the
Racket programming language will be discussed.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features

Keywords

Macros, hygienic macros, macro hygiene, programming lan-
guage design

1. INTRODUCTION
1.1 Macros

Code that is declarative states what it does, and not how it
does it. Declarative code is easier to read, write, and under-
stand because the intent is not obscured by implementation
details. This is the underlying idea in high-level languages

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.

such as Java and Scheme. There arise situations in most
high-level languages where code falls short of this ideal by
having redundancy and complexity not inherent to the prob-
lem being solved. Common abstraction mechanisms, such as
functions and objects, are often unable to solve the problem
[6]. Languages like Scheme provide macros to handle these
situations. By using macros when appropriate, code can be
declarative, and thus easier to read, write, and understand.

Macros can be thought of as providing an abbreviation for
common source code in a program. In English, an abbrevi-
ation (UMM) only makes sense if one knows how to expand
it into what it stands for (University of Minnesota, Morris).
Likewise, macros undergo macro expansion to derive their
meaning. Just as abbreviations are text-to-text transforma-
tions, macros are source-to-source transformations [2].

As an example, one can define additional control-flow con-
structs to a language using macros. unless is such a con-
struct, and is equivalent to an if with a negated conditional.
To add support for unless, we just write a macro that will
turn expressions of the form unless <condition>: <code>
into if not <condition>: <code>. The compiler can com-
pile unless isEmpty(file): readData(file) by expand-
ing the macro into if not isEmpty(file): readData(file).
unless cannot be defined as a function because a function
would have its arguments evaluated before being called, and
so it would try to read data from the file even if it was empty.
This behavior is called call-by-value evaluation order, and is
used by the vast majority of programming languages. This
also shows that macros can do things that functions cannot.

Macros create specialized sub-languages, allowing for the
succinct expression of otherwise verbose concepts in the pro-
gramming language. Using macros, the programmer can
create, encapsulate, and reuse entire sub-languages in their
programming language [3].

1.2 What Can Go Wrong?

When a macro is used, it produces source code to be used
in place of the macro call. The macro must be well written
or else the source code produced may not interact correctly
with the environment in which it was called. For instance, it
may introduce a variable whose name clashes with another
variable, or it might cause some user code to be unintention-
ally evaluated multiple times. These can lead to errors that
are hard to track down because their cause is obscured by
the macro. The first situation only occurs if the program-
mer happens to use a particular variable name, and so can
be very hard to detect. A macro that does not suffer from
these flaws is called hygienic. Hygienic macros preserve the



(define f
(lambda (x)
(let ((y (*x x 3)))
(if (< y 10)
Gy y)))))

Figure 1: A function in Scheme

behavior of the program no matter where they are used in
the program.

A language with a hygienic macro system provides hy-
gienic macro erpansion, a method of maintaining the rela-
tionship between a variable’s name and its value, respect-
ing the structure of expressions in the process [2]. One
does not need a hygienic macro system to write hygienic
macros. However, a hygienic macro system provides guar-
antees about hygiene that a non-hygienic macro system can-
not, and so greatly improves the reliability of macros.

1.3 Overview of Lisp-like languages

Multiple Lisp-like languages are used in this paper. The
syntax of Lisp-like languages are very similar to each other,
so this section will focus specifically on Scheme. Scheme is a
functional programming language, meaning that programs
are based on a composition of functions. In Scheme, all
source code is comprised of lists. A list in Scheme is of the
form (a b c¢), with the empty list being (). When a list,
say (f a b c), is evaluated, one of three things happen: if
f is a special form (such as if), the list is evaluated using
special rules. If £ is a macro, the macro produces a form
to be used in its place. If neither of these are true, then f
is evaluated as a function, and the remainder of the list is
evaluated and passed to the function as arguments.

An anonymous function is introduced in Scheme by lambda.

lambda takes a list of argument names, followed by some
body code. Each argument name will be bound to the cor-
responding argument (the first to the first name, the second
to the second, etc.) when executing the body.

Local variables are introduced using let. let takes a list
of variable-value pairs and some body code. The variables
from the variable-value pairs assume the values from the
pairs when executing the body.

Figure 1 provides an example of defining a function in
Scheme. This code defines £ to be a function of one argu-
ment x, introducing y to be three times x, and returns y if y
is less than 10, otherwise it returns nothing. It is important
to note that the second argument to if, in this case (* y
y), is only evaluated when the condition evaluates to true.

2. MACROSINC

In an imperative programming language, programs are
structured as a sequence of commands that update memory.
C is an example of an imperative language. It has macros
that are based on substituting text in the source code with
other text. The macro language in C is weak, only having
a few constructs available. Due to certain limitations in C
and the weak macro language, it can be difficult or even im-
possible to write a hygienic macro in C. Due to this, macros
in C have gained a bad reputation and it is recommended
that they should be avoided if possible. We use C macros
to illustrate problems with unhygienic macros.

In C, a macro is defined using #define. In Figure 2,

#include <stdio.h>

#define SQ1(x) x*x
#define SQ2(x) ((x)*(x))

int main(int argc, char* argv[]) {
printf ("%d\n", SQ1(2+3));
printf ("%d\n", SQ2(2+3));

int a = 4;
printf ("%d\n", SQ2(++a));
return O;

Figure 2: Macro usage in C

#define SQ1(x) x*x defines SQ1 to be a macro of one argu-
ment x. Upon macro expansion, the argument to the macro
replaces x in x*x to get the macro expansion. For instance,
SQ1(5) would macro expand to 5*5.

SQ1 is the naive way to write a squaring macro: just mul-
tiply the input by itself. However, the first printf prints 11
instead of the expected result 25. The reason for this is that
SQ1(2+3) expands to 2+3%2+3, which results in 11.

SQ2 introduces parentheses to fix the problem. SQ2(2+3)
expands to ((2+3)*(2+3)), so second printf prints 25 as
desired. Parentheses allow C macros to acheive some level
of hygiene [2].

Unfortunately, SQ2 is still incorrect because the argument
of the macro is evaluated twice. This was not a problem in
the above example because 243 does not have side-effects,
but consider the third printf call. Here SQ2(++a) expands
to ((++a)*(++a)). To allow extra optimization, this expres-
sion is undefined in C [1]:

Between the previous and next sequence point
an object shall have its stored value modified at
most once by the evaluation of an expression.

This means that the expression ((++a)*(++a)) invokes un-
defined behavior because the value of a is modified twice in
the expression. When the code is compiled with the com-
piler GCC, the compiled code increments a, then increments
a again, and then multiplies a by a to produce the result 36.
When the compiler Clang compiles this code, the compiled
code increments a, copies a to tmp, increments a, and then
multiplies a by tmp to get 30. Because the expression is
undefined, both results are valid. Thus because of the un-
hygienic nature of the macro, the value of SQ2(++a) depends
on the compiler used.

This macro could be fixed by storing the value of the argu-
ment to a local variable, and then squaring that (the equiv-
alent of (let ((tmp x)) (* tmp tmp)) in Scheme). Un-
fortunately, C does not have a construct similar to let in
the needed ways [2], and so double evaluation is one of the
problems that plagues C macros.

In this case, a squaring function could have been used
instead of a macro to ensure correct behavior. However,
not all macros can be implemented as functions: functions
evaluate their arguments before the call, and so functions
cannot provide features such as conditional evaluation. The
result is that macros should be used carefully and sparingly
in C.



(defmacro sql (x) ‘(x ,x ,x))
(defmacro sq2 (x) ‘(let ((tmp ,x)) (* tmp tmp)))
(defmacro dosuml (var n body)
‘(let ((sum 0))
(dotimes (,var ,n)
(incf sum ,body))
sum))
(defmacro dosum2 (var n body)
(let ((sum (gensym)))
‘(let ((,sum 0))
(dotimes (,var ,n)
(incf ,sum ,body))
,sum)))
(defvar sum 5)
(defvar x 4)
(print (sql (+ 2 3)))
(print (sq2 (incf x)))
(print (dosuml n 2 sum))
(print (dosum2 n 2 sum))

Figure 3: Macro usage in Common Lisp

3. MACROS IN COMMON LISP

The family of Lisp programming languages are well known
for their excellent macro facilities [5]. In the Common Lisp
language, macros are full-fledged elements of the language,
and have the entire language at their disposal. In Com-
mon Lisp, all source code is represented as lists, and the
macros operate on them directly, making macros very pow-
erful. While the macro system is unhygienic, utilities to
provide hygiene in macros exist. However, they have to be
manually used.

let in Common Lisp is the same as Scheme. dotimes is a
keyword that is similar to a for loop in Java. incf is a key-
word to increment a variable by a value'. defvar is the key-
word in Common Lisp for introducing variables. Common
Lisp has a facility for creating lists (or code) from a tem-
plate: an expression preceded by a ¢ character is treated as
a literal, except for the expressions inside that are preceded
by a , character, which are evaluated. This is frequently
used in macros. Thus (let ((x 5)) ‘(* ,x ,(+ x 3)))
evaluates to the expression (* 5 8).

The code in Figure 3 begins with squaring macros. Due
to the nested nature of Lisp code, the simple solution (sql)
works as intended in the first print, but it would be incorrect
at the second invocation as it evaluates its argument twice,
resulting in a duplication of side-effects. sq2 stores the value
of the argument in tmp to ensure double evaluation does not
happen, and so it works correctly. As a result, after the call
x is 5, indicating the side effect happened only once.

In the case of sq2, the tmp variable that is introduced is
harmless as no user code is evaluated inside the let. How-
ever, this is not true in general; dosuml is an example of a
macro that evaluates user code inside a let that it creates.
The third print should print out 10, but instead it produces
0 since the sum variable introduced by the macro is shadow-
ing the sum variable that is visible to the user of the macro.
dosum2 resolves this issue and so it is hygienic (assuming
the user expects the code in the body to be evaluated mul-

'Both dotimes and incf are themselves macros in Common
Lisp, but their implementation is outside the scope of this
work.

Pattern Matches
dolists dolists
#:when #:when
test (odd? a)
clauses ... | (¢ (range a))
body (+ a ¢
Template Replacement
test (0dd? a)
dolists dolists
clauses ... | (c (range a))
body (+ a ¢

Figure 4: Matchings and replacements

tiple times if n > 1). The gensym function in Common Lisp
returns a symbol different from all names that are already
used in the program. Using gensym, the macro can inter-
nally use a variable name that is guaranteed to not conflict
with any user code.

4. MACROS IN SCHEME

Macros in Scheme are similar to Common Lisp macros,
but there are built in facilities for hygienic macros. In par-
ticular, Scheme was the first programming language to sup-
port hygienic macros [8]. A macro in Scheme is defined by
(define-syntax name expander), where name is the name
of the macro and expander is evaluated to get the expansion
function (a function that takes the macro call and returns
the new source code). syntax-rules (see Section 11.19 of
[8]) creates an expander function, and is one of the com-
ponents of the hygienic macro system. syntax-rules is an
implementation of Macro-By-Example (see [6]), meaning the
macro is defined in terms of example usages of the macro.

We use a (simplified) subset of syntax-rules:

(syntax-rules (rule template)*)

with the star meaning that (rule template) can be re-
peated multiple times. The expander function created by
syntax-rules will try to match the macro call against each
rule in turn, and on the first successful match, fills in the
corresponding template and returns it.

Consider the following rule-template pair:

((dolists ((#:when test) clauses ...) body)
(if test (dolists (clauses ...) body)))

Suppose the macro call was

(dolists ((#:when (odd? a))
(c (range a)))
(+ a c))

In the process of trying the rule, several matches will be at-
tempted. Figure 4 shows the various components of the rules
and what they are trying to match against. In syntax-rules,
lists are matched against lists. For brevity, these matches
are omitted.

When the pattern is a symbol (this type of pattern is
called a pattern variable) such as dolists, the pattern will
match anything. Literals such as #:when will match only
themselves. A symbol followed by ... will match the rest
of the list. In this case, all of the matches succeed. The
next step is to fill in the template. As seen in Figure 4, the



(define euler-9
(find-first
((a (range 1 1000))
(b (range (+ a 1) (/ (- 1000 a) 2)))
(#:1let ¢ (- 1000 a b))
(#:when (= (x c c) (+ (x aa) (x b Db)))))
(* abc)))

public int euler9() {
for (int a : range(1, 1000)) {

for (int b : range(a+l, (1000-a)/2)) {
int ¢ = 1000-a-b;
if (c*c == a*a + bxb) {

return axbx*c;

}rr}

Figure 5: The solution in Scheme and Java

symbols from the rule are replaced with what they matched
in the rule.

When filling in the template, the case of if is special: it
is not a symbol appearing in the rule. Since it was defined
where the macro was defined, if will stay the same assuming
that if does not mean something else when the macro is
used. If if was not defined where the macro was defined,
then it would have been renamed to a name that will not
clash with any other variable name.

Filling in the template results in the macro expansion:

(if (odd? a) (dolists ((c (range a))) (+ a c)))

This expansion of the macro uses a nested dolists so the
full macro expansion is not yet complete. The compiler will
now expand the result of the macro expansion until no more
macros remain.

S. EXTENDED MACRO EXAMPLE

5.1 A Project Euler problem using macros

A functional programming language like Scheme is a good
choice for solving mathematical problems, and the Project
Euler website provides many of them. Problem 9 [7] on
Project Euler states

A Pythagorean triplet is a set of three natural
numbers, a < b < ¢, for which, a? + b = ¢2. For
example, 3% + 4% = 94+ 16 = 25 = 5%. There
exists exactly one Pythagorean triplet for which
a+ b+ c=1000. Find the product abc.

This problem can be solved by finding the first abc such
that a, b, and c satisfy both constraints. We could do this
directly in Scheme, but the resulting code would not be very
declarative. We can make the solution code be declarative
by writing a find-first macro, which will integrate the
loops, conditionals, and variable definitions we would other-
wise use. Figure 5 contains a solution to the problem using
find-first. range is a function defined so that (range a
b) returns a list of all integers x such that a < x < b.

Figure 5 also show a Java version of the Scheme solution.
The range function in the Java code returns a list of integers
in the same manner as the range Scheme function. To use
find-first we have to write it, but once it is written it can
be used anywhere.

(define-syntax dolists
(syntax-rules
((dolists () body)
body)
((dolists ((#:when test) clauses ...) body)
(if test
(dolists (clauses ...) body)))
((dolists ((#:let var val) clauses ...) body)
(let ((var val))
(dolists (clauses ...) body)))
((dolists ((var val) clauses ...) body)
(for-each (lambda (var)
(dolists (clauses ...) body))
val))))
(define-syntax find-first
(syntax-rules
((find-first (clauses ...) val)
(with-break
(dolists (clauses ...)
(break val))))))

Figure 6: dolists and find-first

5.2 Implementing find-first

We now need to implement find-first. Since we want
find-first to be hygienic, we will define any needed macros
with syntax-rules to get the hygiene for free. It is rea-
sonable to have the macro produce a near direct Scheme
translation of the Java code.

find-first is a bit complicated, so it would be useful to
create a helper macro. We can write a dolists macro, see
Figure 6, that will encapsulate all of the looping, conditional,
and variable definition logic. If we had a println function
that would print a value on a new line, then

(dolists ((a (range 1 10))
(#:when (0dd? a)))
(println a))

would print the odd numbers between 1 and 9. dolists in
effect creates a small language for expressing iteration. This
ability is one of the benefits of macros.

The above example has two clauses, or forms that tell
dolists what to do. The two clauses used above are (a
(range 1 10)) and (#:when (odd? a)); these clauses re-
spectively tell dolists to loop over the list returned by
(range 1 10) with a having the values in the list, and to
proceed only when (odd? a) is true. The Project Euler solu-
tion used a third type of clause, (#:1et ¢ (- 1000 a b)).
This clause instructs dolists to proceed with ¢ being the
value of (- 1000 a b). This is equivalent to the first line of
the inner loop in the Java version.

We will implement dolists recursively, so there are four
cases to handle:

There are no clauses (the base case of the macro).
The first clause is a #:when clause.

The first clause is a #:1et clause.

The first clause is a for-each clause.

These four cases correspond to the four rules in the definition
of dolists, Figure 6.

The reason for the recursive implementation is the recur-
sive structure in its macro expansion—the fact that (dolists
(a b) body) is equivalent to (dolists (a) (dolists (b)



body)). The usage of recursion is a very useful technique
when writing macros.

dolists uses the for-each function to implement the for-
each loop; this is useful as it eliminates the need to imple-
ment the iteration in the macro. Since for-each is a func-
tion, we have to wrap the body of the iteration in a func-
tion to block its evaluation until the appropriate time in the
for-each call, and to introduce the variable that each value
of the list will be bound to.

Defining find-first is relatively straight-forward with
dolists in place. Using with-break and break?, we can
break out the dolists loops once the answer is found. This
corresponds to the return statement in the Java version.

6. MACROS IN RACKET

Hygienic macro systems ensure that macros defined are
hygienic, and so will behave correctly. However, there is
more to correct macros than hygiene. Macros are an ab-
straction mechanism, but they are converted to a less ab-
stract form before being compiled. If the macro was used
incorrectly, the macro’s expansion may not be valid code. In
this case, the resulting error message will not be very help-
ful as it will be in terms of what the macro expanded into.
The result is that the macro confuses and distracts the user
because the abstraction it provides is broken. For a macro
to be truly correct, it must also provide the correct response
when its input is invalid.

Scheme’s syntax-rules helps address this problem as the
macro’s usage must match one of several forms. Thus the
macro programmer can specify some invariants that correct
usage will have. However, syntax-rules is limited in what
sort of invariants can be encoded in the macro’s definition.
Consider Figure 6. The rule for the for-each clause is

(dolists ((var val) clauses ...) body)

It is intended that var will ever only match a symbol, but
this is not enforced by syntax-rules as var could match
(a b). If this happens, the macro expansion will contain
(lambda ((a b))
The result will be an error message that is removed from the
context of the macro, and so can be difficult to understand.
By using other methods to define the macro, it is possible to
add validation code to the macro to ensure that var is actu-
ally a symbol, but this is an ad-hoc solution to the problem.

Additionally, there is another issue with syntax-rules:
it is hard to create macros using syntax-rules that do not
have a very homogeneous syntax. For example, keyword ar-
guments are hard to handle, and keyword arguments that
take a varying number of additional arguments are even
more problematic. As a result of this, many macro writ-
ers are forced to simplify the grammar of the macro to make
implementation feasible.

In [4], Ryan Culpepper and Matthias Felleisen introduce
the macro system syntax-parse. syntax-parse is able to
solve these issues with syntax-rules. syntax-parse is part
of the Racket programming language, a dialect of Scheme.
Users of Racket have confirmed that syntax-parse makes
it easy to write macros with complex syntax. By using

2with-break and break are an abstraction we define over the
facilities Scheme provides for jumping out of a function in
the middle of its execution. Their implementation is beyond
the scope of this paper.

...), which is not valid syntax for lambda.

(define-syntax-class binding
#:description "binding pair"
(pattern [var:identifier rhs:expr]))
(define-syntax-class distinct-bindings
#:description "sequence of binding pairs"
(pattern (b:binding ...)
#:fail-when (check-duplicate #’(var ...))
"duplicate variable name"
#:with (var ...) # (b.var ...)
#:with (rhs ...) # (b.rhs ...)))
(define-syntax (let stx)
(syntax-parse stx
[(let bs:distinct-bindings body:expr)
#’((lambda (bs.var ...) body) bs.rhs ...)]))

Figure 7: Example definition of let

syntax-parse, the macro programmer can create much bet-
ter abstractions than they could before, and the macros pro-
duced are very robust, declarative, and reusable.

syntax-parse is similar to syntax-rules, but it provides
powerful tools designed to simplify the verification of the
macro usage, and improve the quality of the error messages
produced by a syntax error. It does this by being able to
detect a larger class of syntax errors before the macro is ex-
panded into more primitive forms. This improves the quality
of error messages, and increases the quality of the abstrac-
tion macros provide.

Additionally, syntax-parse is able to handle macros with
less homogeneous syntax with an order of magnitude reduc-
tion of difficulty. As pointed out in [4], the define-struct
macro in Racket had over a hundred lines of parsing code
to handle the keyword arguments that define-struct can
take. When define-struct was ported to syntax-parse,
the number of lines required on parsing code was an order
of magnitude less. This was possible because syntax-parse
eliminated the need to write the complex parsing and vali-
dation code by hand.

syntax-parse derives much of its power by allowing pat-
tern variables to be annotated with the type of expression
that the pattern variable should match. These types are
called syntax classes. For example, a pattern variable could
be annotated with the syntax class of a symbol so that it
would only match a symbol. The programmer can define
their own syntax classes. A syntax class definition includes
a description of the syntax, and can include extra validation
code. Figure 7 shows the definition of two syntax classes
that would be useful when defining let as a macro. In the
figure, we see how a pattern variable is annotated with a
syntax class. The syntax class of a symbol is identifier,
and the syntax class of any expression is expr.

As seen in the figure, the description of the syntax class
is introduced with the #:description keyword. Side con-
ditions can be introduced with the #:fail-when keyword,
which takes the validation code and the description of the
error if the validation fails. syntax-parse also allows extra
side conditions in the definition of the macro itself. This
is useful if there is a side condition that only belongs to a
single macro.

It is frequently the case that one wants access to the pat-
tern variables that where defined in a syntax class. Us-
ing the dot syntax, one can gain access to these pattern
variables. For example, in the definition of let, bs.var



> (let ([x 1] [x 2]) (h x))

let: duplicate variable name in: x

> (let ([(xy) (£ M]1) (g x y))

let: expected identifier in: (x y)

> (let (x 5) (addl x))

let: expected binding pair in: x

> (let 17)

let: expected sequence of binding pairs in: 17

Figure 8: Errors syntax-parse produces

refers to the var pattern variable in the instance of the
distinct-bindings syntax class that bs was matched to.
Using #:when, a syntax class can export other pattern vari-
ables. #:when takes a pattern and a form to match. #’expr
in Racket is the syntax for filling in the template expr. It is
used in the definition of the syntax class distinct-bindings
to get a copy of b.var and b.rhs for exporting the var and
rhs pattern variables respectively.

syntax-parse also produces excellent error messages al-
most for free. Figure 8 shows errors messages produced by
syntax-parse given the definition of let in Figure 7. The
first error message shows the result when the validation code
for the #:fail-when in distinct-bindings returns a true
value. In this case it returned x, signifying that x was the
culprit. The other three error messages show the result when
the target of a pattern variable does not have the right syn-
tax class.

The underlying idea in syntax-parse is that “error re-
porting should be based on documented concepts, not im-
plementation details” [4]. In keeping of this philosophy,
syntax-parse generates error messages from the descrip-
tion of the syntax classes used. A macro defined using
syntax-parse knows there is a syntax error if no pattern
completely matches the macro call. In the case that a sim-
ple pattern (such as a pattern variable) is the cause of the
failure, syntax-parse will use the description of the simple
pattern to generate the error message.

If the macro fails because of a compound pattern (such
as a list pattern), reporting the description of the pattern
is not sufficient. In general, the description of a compound
pattern is little more than the pattern—an implementation
detail. What syntax-parse will do in this case is search the
stack of pattern matches to find what simple pattern this
failure is contained in. syntax-parse will then generate an
error message based off of this simple pattern instead. The
third and fourth error messages in Figure 8 are the result of
a compound pattern failing. As seen, syntax-parse found
the nearest simple pattern and reported the corresponding
error message.

The features given here are only a few of the features
supported in syntax-parse. syntax-parse can guess what
the user of a macro intended based off of how much each
pattern matched. This allows a relevant error message to
be produced. Other features that syntax-parse supports
include syntax classes that take parameters and head pat-
terns. Parametrized syntax classes allow for more abstrac-
tion in the definition of syntax classes. Head patterns are a
variant of list patterns that allow for the easy definition of
macros that take keyword arguments.

The result of all of the features in syntax-parse is that
syntax-parse is a large step up from syntax-rules, just as
syntax-rules was a large step up from unhygienic macros.

7. CONCLUSIONS

Macros are a very powerful construct that allow for suc-
cinct code by factoring out redundancies and implemen-
tation details. Using macros, one can create small sub-
languages to allow for the precise formulation of domain-
specific tasks. However, it is important for macros to be
hygienic. If a macro is not hygienic, subtle and hard to find
bugs can be introduced. A macro that is not hygienic is a
broken abstraction that is nearly useless as one must con-
template the result of macro expansion to ensure the code
is correct; defeating the purpose of having the macro in the
first place.

C macros have many flaws when it comes to hygiene—even
defining a simple squaring macro can be quite challenging.
Due to this notorious lack of hygiene, macros in C should
be avoided when possible. Common Lisp macros can be
hygienic with some work, but one still has to define them
carefully as hygiene is not provided automatically.

Scheme’s hygienic macro system makes creating hygienic
macros easy, as seen when we solved a Project Euler problem
using macros. Languages like Scheme give their users great
power by allowing them to extend the language when they
feel that that it is the best choice.

Finally, we explored recent work in the field, namely the
macro system syntax-parse. This system allows for even
better macros to be easily written. These better macros
handle syntax errors with grace and generate error messages
that are much more comprehensible.

8. REFERENCES

[1] ISO/IEC JTC1/SC22/WG14 — C: Approved
standards, 2010. [Online; accessed 15-November-2010].

[2] W. Clinger and J. Rees. Macros that work. In POPL
’91: Proceedings of the 18th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 155-162, New York, NY, USA, 1991. ACM.

[3] R. Culpepper and M. Felleisen. Debugging hygienic
macros. Sci. Comput. Program., 75(7):496-515, 2010.

[4] R. Culpepper and M. Felleisen. Fortifying macros. In
Proceedings of the 15th ACM SIGPLAN international
conference on Functional programming, ICFP ’10,
pages 235-246, New York, NY, USA, 2010. ACM.

[5] E. Kohlbecker, D. P. Friedman, M. Felleisen, and
B. Duba. Hygienic macro expansion. In LFP ’86:
Proceedings of the 1986 ACM conference on LISP and
functional programming, pages 151-161, New York, NY,
USA, 1986. ACM.

[6] E. E. Kohlbecker and M. Wand. Macro-by-example:
Deriving syntactic transformations from their
specifications. In POPL ’87: Proceedings of the 14th
ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 77-84, New York, NY,
USA, 1987. ACM.

[7] Project Euler. Problem 9 — Project Euler, 2002.
[Online; accessed 23-October-2010].

[8] M. Sperber, R. k. Dybvig, M. Flatt, A. Van straaten,
R. Findler, and J. Matthews. Revised® report on the
algorithmic language scheme. J. Funct. Program.,
19:1-301, August 2009.



