
Modern Considerations of Garbage Collection
in the Java HotSpot Virtual Machine

Jeffrey D. Lindblom
lindb310@morris.umn.edu

ABSTRACT
This paper describes garbage collection (GC) from the ground
up, with a detailed comparison of various GC techniques and
algorithms to date. In this effort we will explore how GC has
evolved to what we see in the Java HotSpotTMVirtual Ma-
chine today, and discuss the modern performance challenges
it faces now and in the future.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection), Optimization, Run-time
environments; D.3.2 [Programming Languages]: Lan-
guage Classifications—Object-oriented languages, Java

General Terms
Algorithms, Performance, Design, Reliability, Languages

Keywords
Garbage Collection, GC, Java Virtual Machine, Java, HotSpot

1. INTRODUCTION
Within the field of computer science, programming is the

process by which computer software, or programs, are engi-
neered. This process is undertaken via a programming lan-
guage, a syntactic set of definitions and rules that allows
programmers to symbolically express software functionality.
Just as there are many different languages for communica-
tion, there are many different programming languages for
programming. The programming language we will be focus-
ing on within this paper is Java, which is known to be an
object-oriented programming language [17].

Object-oriented programming languages are considered as
such because of how they represent data. Within an object-
oriented programming language, data is represented and re-
lated through objects. E.g. if we were to program the game
of solitaire, we might want to create a card object to hold

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference Morris, MN.

each card’s suit and number, and a deck object to hold all of
the card objects. Programming in this fashion can help to
preserve data relationships and ideas in an explicit manner.

While objects can help model data in useful ways, they do
incur a cost on the computer system. This is realized in the
form of a space usage known as memory allocation. For each
object defined within Java, computer memory has to be al-
located to it for it to exist. While in some programming lan-
guages we have to allocate this memory manually, such as in
C, others, like Java, allocate it automatically [17]. Memory
is not infinite however, and non-trivial software may instan-
tiate substantial quantities of objects. This makes it impor-
tant to maximize the amount of memory we have available,
not only to maintain free space, but also to lessen software
impact on a computer system.

One way of achieving memory maximization is by ensuring
that objects that are active within a program take preference
over ones that are not. These inactive objects are described
as dead objects, and are characterized by being unreachable
within the program. An object is considered reachable when
it has the possibility of being used by the program presently
or in the future [12].

Taking care to identify and eliminate dead objects is an
ever-present problem in object-oriented programming. For
memory-managed languages like Java, we rely on a system
of interpretive, algorithmic strategies known as garbage col-
lection (GC) to mind the process for us. This is achieved
through what we call a garbage collection cycle, an iterative
loop of identification and freeing of dead objects within an
actively running program. The freeing of these dead objects
is referred to as collection, the reclamation of memory [14].

2. FUNDAMENTALS OF GC
Garbage collection (GC) originated from two very distinct

algorithms, reference counting (RC) and Mark-and-Sweep,
which were both fully developed by 1960. Since then, RC
and Mark-and-Sweep have dominated the field of GC. Vari-
ous implementations of each have made their mark in many
different memory managed languages over the years, and
they presently continue to be optimized for increasingly com-
plex programs and environments [3] [10].

2.1 Reference Counting vs Mark-and-Sweep
Fundamentally, a RC garbage collector is just as it sounds.

It tracks a given object’s reachability by counting the num-
ber of references to it from other objects. An object refer-
ence is an object’s active association with another object,
e.g. a dealer object dealing a card object. When a given ob-



ject’s reference count drops to zero, the object is deemed un-
reachable and is subsequently freed. This simple behaviour
gives RC the advantage of clarity and understanding. It
is easy to follow its motions and predict how it will act.
Unfortunately though, such a basic approach allows for self-
referencing objects to slip through.

Figure 1: Unreachable Self-referencing Object

Self-referencing objects are objects that refer to them-
selves either by a direct or indirect means. An example
would be a doubly-linked list with two objects. A doubly-
linked list is a list of objects that are linked together in a
bi-directional fashion, i.e. object A points to object B and
object B points to object A. In this sense object B refers to
A and object A refers to B. If the doubly-linked list were
ever to become unreachable, the references between object
A and object B would still exist, and as such their refer-
ence count would not be zero. This illuminates the reference
count loophole that self-referencing objects fall through. Im-
plementations of RC exist to compensate for this, but they
incur costs of memory overhead and an increase in algorith-
mic complexity [10].

A Mark-and-Sweep garbage collector works much the op-
posite to RC. It instead identifies which objects are reach-
able first, and then discards whatever objects remain. This
operation is performed in two steps, the mark phase and
the sweep phase. The mark phase works to identify reach-
able objects through their relations to other objects. It does
this by assuming reachability through a transitive means, i.e.
any object that is referenced from a reachable object is itself
reachable. A set of top-level objects are chosen as roots in
this process, and these roots provide the algorithm a start-
ing point from which to trickle down through references and
mark which objects are reachable. Once all reachable object
references have been exhausted, the sweep phase is initiated.
In this phase all objects within memory are queried, and any
unmarked objects discovered are collected [18] [16].

Algorithm 2.1: Mark-and-Sweep()

procedure markAndSweep(objects)
roots ⊆ objects
for each root ∈ roots
do mark(root)

sweep(objects)

procedure mark(object)
if !object.marked?
object.marked?← true

for each referencedObject ∈ object.references
do mark(referencedObject)

procedure sweep(objects)
for each object ∈ objects
if object.marked?
object.marked?← false

else
objects.release(object)

Unlike RC, Mark-and-Sweep is also capable of collecting
self-referencing objects. This is due to its emphasis on tran-
sitive reachability, rather than reference counts outright. A
draw-back of this behaviour though, is that exhausting ref-
erences to identify what is reachable can take a relatively
long time to complete. This type of behaviour is space inef-
ficient and can generate long, distributed interrupts within a
program, especially if there is a lot of object relations to tra-
verse. Dead objects also have to wait for the sweep phase to
complete before they can be released, which results in longer
delays between objects becoming unreachable and actually
being collected.

In contrast, RC is an incremental form of GC. It has a
very quick dead object collection rate. This is because ob-
jects that fit the collection criteria are eliminated imme-
diately after reference counts are updated, and reference
counts are updated accordingly with each program compu-
tation. In other words, objects are reclaimed as soon as they
are determined unreachable, providing for short, incremen-
tal GC interrupts. For Java programs that lose effectiveness
from long interruptions, a garbage collector like RC is ideal.
On the down-side though, continuous updating of reference
counts can also generate inefficiency. With RC cycles occur-
ring so frequently, many RC cycles could terminate without
any dead objects being freed [3].

2.2 Stop-and-Copy Collection
Stop-and-Copy collection is a more memory intensive vari-

ation of the Mark-and-Sweep algorithm. It similarly defines
a set of roots, of which it identifies reachable objects through
transitive association. The difference is that Stop-and-Copy
does not perform a sweep to collect dead objects. Instead it
relies on a copy then release strategy that utilizes predefined
spaces within memory [1].

In its most basic form, two spaces are defined for the Stop-
and-Copy algorithm; one labelled the to space, and the other
labelled the from space. When a program is initialized, ob-
jects are allocated into the ‘to space’ until it fills up. Once it
reaches capacity, a collection cycle is triggered and the pro-
gram’s execution is halted. At the start of each Stop-and-
Copy collection cycle, the ‘to space’ and the ‘from space’
switch roles. The space that reaches capacity becomes the
new ‘from space’, while the remaining unoccupied space be-
comes the ‘to space’ [18].

Figure 2: Stop-and-Copy Collection

Once a collection starts, objects reachable from the root
set are traversed through their references through a recursive
copy operation. The copy operation begins by confirming
that the object has not already been copied to the ‘to space’,
as overlaps can often occur. It then copies the object to the
‘to space’, leaving a forwarding reference to the copied object
within the ‘from space’ as to indicate it has been copied.
Last, it calls the copy operation on all objects referenced
by the recently copied object [8]. The pseudocode for this



procedure is defined below.

Algorithm 2.2: Stop-and-Copy()

fromSpace ≡ Objects
toSpace ≡ ∅

procedure StopAndCopy()
roots ⊆ fromSpace
for each root ∈ roots
do copy(root)

release(objects ∈ fromSpace)
swap(fromSpace, toSpace)

procedure copy(object)
if !object.forwarded?
toSpace.add(object)
object.forwarded?← true
for each referencedObject ∈ object.references

do copy(referencedObject)

As can be seen, the Stop-and-Copy collector relies on the
copy operation to perform the marking of reachable objects.
Once this operation finishes, all reachable objects can now
be assumed to exist within the ‘to space’. Any remaining
objects in the ‘from space’ are then assumed dead and subse-
quently collected, ending the cycle. Program execution now
resumes, and new objects are allocated to the ‘to space’ until
capacity is reached again.

One of the more important observations of the Stop-and-
Copy algorithm is that the work it performs is proportional
to the quantity of reachable objects within a program. In
other words, this algorithm will perform significantly faster
on programs with smaller quantities of reachable objects.
A disadvantage though, is that the algorithm necessitates a
large quantity of available memory in order to perform its
copying procedure. This is the major trade-off it has versus
marking, as defined in the Mark-and-Sweep algorithm [1]
[18].

2.3 Performance and Optimization
The key to GC optimization, and consequently program

efficiency, is balance. This ties into a GC concept known
as throughput, the ratio of program run-time spent work-
ing as opposed to garbage collecting. Mark-and-Sweep, for
example, has a higher throughput than reference counting
because its collection cycle occurs less frequently [14].

Different programs have different dynamics, and as such
require different configurations of GC. The objective here is
not to maximize throughput of a running program, but to lo-
cate an optimum between collecting too much and collecting
too little. GC that collects frequently, while effective at free-
ing dead objects quickly, has the disadvantage of incurring
unnecessary impacts on performance when there are few to
none dead objects to collect. GC that collects infrequently
however also runs the risk of developing a significant mem-
ory overhead from dead objects left uncollected for longer
periods of time. This can cause a running program to leave
a bigger footprint on the computer system, negatively im-
pacting the program’s performance [4].

GC today employs a multitude of strategies to overcome
these performance challenges. We will look at approaches
used within the Java HotSpot Virtual Machine (HotSpot
JVM), a software process that interprets and executes Java
programs on a computer system [5].

3. GENERATIONAL GC
When considering the life-span of objects in memory, three

possible scenarios can be assumed:

(1) The object becomes dead shortly after allocation.

(2) The object becomes dead long after allocation.

(3) The object never becomes dead after allocation.

It is these three scenarios that shape how generational garbage
collection operates, named as such due to its emphasis on
generations of objects.

Generations, as the name implies, are sets of objects with
similar life-spans. The generational garbage collector works
by dividing objects up into several of these sets, the most
common configuration involving just two sets, young and
old. The distinction between the two are important, as their
differences lead into what is known as the weak generational
hypothesis.

This hypothesis is described by two basic observations: (i)
most allocated objects become dead shortly after allocation,
(ii) there exist few references from older objects to younger
objects. This means that younger generations of objects
benefit from GC algorithms that have frequent collection
cycles, as the frequency of dead objects being available to
collect is much higher. Accordingly, younger generations
typically contain a small number of active objects, and as
such do not require GC algorithms that are space efficient
[12].

Older generations are built up of objects that have been
tenured, meaning they have survived enough younger gen-
eration collections to be promoted. These generations usu-
ally contain a large amount of active objects, and are slow
to grow due to the large number of short-lived objects in
younger generations. Given these attributes, collection cy-
cles on old generations take a relatively long time to com-
plete [13].

What makes these insights particularly useful, is the fact
that generational GC allows for varied types of collection
algorithms to be utilized upon different generations of ob-
jects. The HotSpot JVM takes full advantage of this fact to
prioritize collection algorithms toward generations of objects
matching their best-case scenarios [12].

3.1 Generational GC in the HotSpot JVM
In the HotSpot JVM, object memory allocation occurs in

a space construct known as the heap. This is where gener-
ational GC in the JVM operates, dividing up the heap into
two sets: the young generation and the old generation. The
vast majority of Java objects are initially allocated to the
young generation [12].

The young generation consists of three spaces, Eden and
two equally sized survivor spaces. Eden is where objects
are initially allocated. Once Eden reaches capacity, a col-
lection cycle know as minor garbage collection is triggered,
which collects dead objects within the young generation and
allows for surviving objects to be tenured to the old gener-
ation. Before and after minor garbage collection, at least
one survivor space is always left unoccupied. This survivor
space is commonly referred to as the to survivor space, while
the other one is known to be called the from survivor space
[14].

When a minor garbage collection occurs, the Stop-and-
Copy algorithm is performed. The reasoning for this ties



back into the weak generational hypothesis we defined above.
If observation (i) holds, most objects allocated to the young
generation will die quickly. This means the collector will typ-
ically encounter high volumes of dead objects, and low vol-
umes of reachable objects. As was mentioned earlier, Stop-
and-Copy collection work is proportional to the quantity of
reachable objects. This gives us a performance advantage
over other collection algorithms, as Stop-and-Copy perfor-
mance is negligibly effected by the quantity of dead objects
to collect. This contrasts with algorithms like Mark-and-
Sweep, which has to traverse all objects within memory in
both its mark and sweep phases.

Figure 3: Minor Garbage Collection [12]

During the Stop-and-Copy collection, the reachable ob-
jects within Eden are moved to the ‘to’ survivor space, while
objects that are too big to fit within the ‘to’ survivor space
are tenured to the old generation. Next, reachable objects
within the ‘from’ survivor space are moved to the ‘to’ sur-
vivor space, similarly tenuring objects that are too large. By
this point, the Eden space is empty, and the survivor spaces
will have swapped roles. The now occupied survivor space
becomes the new ‘from’ survivor space, switching roles with
its counterpart. Objects moved from the ‘from’ survivor
space to the ‘to’ survivor space during a minor garbage col-
lection each receive a count. This count serves to enumer-
ate the number of times an object has survived a minor
garbage collection. Once an object’s count reaches a prede-
fined threshold, it is tenured to the old generation.

The old generation, consisting of long-lived objects, ag-
gregates slowly over time into a sizeable chunk of the heap.
Once it fills up, a collection cycle known as major garbage
collection is triggered. During this cycle, the Mark-Sweep-
Compact collection algorithm is performed on all objects
within the old generation.

Figure 4: Sliding Compaction [12]

Mark-Sweep-Compact collection is very similar to Mark-
and-Sweep collection. The initial behaviour is the same,
objects reachable from the roots are traversed and marked,
while unmarked objects are collected during the sweep phase.
The only distinction is what occurs after the sweep phase

has completed. A process known as sliding compaction is
initiated, which simply slides the surviving objects within
the old generation to the beginning of their respective gen-
erations. This allows for fast allocation of objects to the old
generation, because instead of having to keep track of multi-
ple distributed empty-spaces within the generation space we
can just append the object to the end of the last allocated
object within a generation.

As might be guessed, major garbage collection occurs rel-
atively infrequently. The reasoning for this set-up can be
found in the observations of the weak garbage collection hy-
pothesis outlined above. If we are willing to assume that
the vast majority of objects die young, it is reasonable to fo-
cus JVM resources into collecting objects within the young
generation [14].

4. PARALLEL GC IN THE HOTSPOT JVM
The most basic application of generational GC within the

HotSpot JVM is the serial collector. The serial collector
performs GC in a stop-the-world fashion, meaning that Java
programs are halted when collection is taking place. This
halt can last for a relatively long period of time because
the serial collector is developed to work on only one central
processing unit (CPU), which is where Java program com-
putations are scheduled for processing [12]. This type of
processing is quickly becoming obsolete as we begin to rely
more and more on parallel systems for running programs.

A parallel system is one that embodies multiple central
processing units for which to run and schedule computer
processes. As hardware becomes cheaper, parallel system
architectures become increasingly wide-spread and complex.
The advantages of such systems are the maximization of
multi-tasking behaviour, which presents some increasingly
interesting and complex scheduling challenges in terms of
program execution and process management. One of these
challenges is how to best utilize parallel environments in the
optimization of GC.

4.1 The Throughput Collector
The most basic parallel processing collector in the HotSpot

JVM is the throughput collector, also known as the parallel
collector. Its functionality is similar in concept to the serial
collector, but ran in a parallel fashion. The young generation
set-up is the same, we have an Eden space along with two
survivor spaces. The difference lies in how minor garbage
collection is performed. We now use a parallel version of the
Stop-and-Copy collector to collect on the young generation
[5] [12].

Implementing Stop-and-Copy to work in parallel is actu-
ally not too difficult. We rely on an artifact known as threads
to take care of the parallel behaviour for us. Threads are
spawned processes that work separate to the process that
spawned it. They are scheduled independent of their par-
ent process, which allows them to be processed on separate
CPUs. This approach ties into the the goal of parallel pro-
cessing GC, which is to utilize as many scheduling constructs
as possible.

Parallel Stop-and-Copy starts the same way as normal
Stop-and-Copy, objects are initialized into the ‘to-space’ un-
til it becomes full. Once a collection cycle is initiated, the
‘to space’ and ‘from space’ roles are switched and the al-
gorithm begins to copy reachable objects from the newly
defined ‘from space’ to the newly defined ‘to space’. This is



where parallel processing kicks in, every copy operation per-
formed on objects within the ‘from space’ is spawned into
its own thread. This allows for objects to be traversed and
copied to the ‘to space’ in parallel, greatly reducing the time
taken to copy all reachable objects.

One observation that is important to note here though, is
that there now runs the possibility of one object having a
copy operation performed on it by two or more threads at
the same time. This can lead to erroneous results, so the
parallel Stop-and-Copy algorithm must take care to ensure
that an object can only be processed by one copy thread at a
time. The process by which this is done is called thread syn-
chronization, and is one of the additional overheads parallel
GC can incur [11].

What distinguishes the throughput collector from other
parallel collectors within the HotSpot JVM, is that it does
not use parallel processing to collect the old generation. For
most Java programs, this is generally acceptable, because
the old generation usually has very few dead objects to col-
lect. Parallel processing makes use of multiple CPUs, so it
tends to increase the footprint of Java program processing on
a computer system. This makes it important to utilize paral-
lel processing only when the potential benefits outweigh the
costs. Some examples of situations where this might be true
are; Java programs that require shorter pauses from GC,
Java program execution on computer systems that would
be negligibly effected by the parallel processing, or expec-
tations of large amounts of dead objects to collect. For sit-
uations that may benefit from parallel old generation col-
lection, the HotSpot JVM currently provides three options
as of Java SE 7: the parallel compacting collector, the con-
current mark sweep (CMS) collector, and the garbage first
collector [5] [12].

4.2 CMS versus Parallel Compaction
The CMS collector and the parallel compacting collector

are both generational and collect the young generation using
the same process as the throughput collector. The main dif-
ference between the two, is that the CMS collector operates
in a concurrent fashion, while the PC collector does not [5]
[12]. What this means is that the CMS collector performs
most of its collection cycle in parallel to Java program com-
putation. This allows for the Java program to have higher
throughput than the parallel compaction collector, but in-
stead suffers higher latency.

Latency in GC is the measurement by which a garbage
collector negatively affects program processing performance.
The CMS collector has relatively high latency because it
performs most of its collection cycle in parallel to the Java
program’s computation. This implies that CPUs used for
processing the Java program will also be shared with the
garbage collector, taking away the potential performance ad-
vantages those extra scheduling cycles might yield. If higher
throughput is a reasonable trade-off for this constraint, then
CMS is your garbage collector of choice.

The CMS collector itself uses a parallel implementation
of Mark-and-Sweep, while the parallel compacting collector
uses the Mark-Summary-Compact algorithm. The Mark-
Summary-Compact algorithm is similar to the Mark-Sweep-
Compact algorithm, except that it focuses on regions rather
than objects. The data for the regions that live objects
are located in is stored during the mark phase, and dead
objects are overwritten with live objects pushed to the left

during the summary and compact phase. This leaves the
old generation with one chunk of live data on the left and
the remaining unallocated space on the right [15].

5. REAL-TIME GC
In object-oriented languages like Java and C#, real-time

applications are becoming an increasingly tangible perfor-
mance challenge in the field of computer science. A real-time
application is a program that incorporates tasks with strict
computational deadlines to meet. Task failure to meet those
deadlines can result in erroneous behaviour by the program,
and irrevocably skewed results. As such, it is important
for real-time garbage collection (RTGC) to work incremen-
tally, interleaving itself within the expected computations
of the real-time applications [9]. Some examples of fields
that require a real-time emphasis are military command-
and-control operations, financial trading systems such as the
stock market, and on-the-fly audio processing [7].

A real-time garbage collector attempts to operate in a
fashion that effectively bounds its space and time overheads.
Ideally, if RTGC can maintain predictability and incremen-
tal behaviour, real-time Java applications can more safely
run within those defined constraints [2] [9]. Currently, there
are three defined criteria for effective real-time computing:
hard, firm, and soft. Applications that fit under the hard
real-time bound are very fragile. Missing just one task dead-
line means total application failure. Obviously, this is the
most difficult bound to meet with GC. Firm real-time appli-
cations can tolerate infrequent deadline misses, but any such
miss nullifies the results associated with the task. Soft real-
time applications are the low-end criteria. Deadline misses
do not necessarily nullify task results, but the usefulness of
said results are seriously degraded proportional to how much
the deadline was missed by.

5.1 The Garbage First Collector
As of Java SE 7, the HotSpot JVM has only one garbage

collector that satisfies the soft real-time criteria. It is called
the garbage first collector (G1), and is touted as the func-
tional replacement for the CMS collector. The HotSpot
JVM’s G1 collector takes a wholly different approach then
generational collection. It divides the heap up into a set of
equally sized regions. One of these regions is chosen for the
initial allocation, and new regions are chosen for allocation
each time the current one is filled. Each individual region is
associated with a remembered set, which indicates all loca-
tions that might contain references to live objects within its
region.

Somewhat similar to the CMS collector, the G1 collector
utilizes a concurrent Mark-Sweep algorithm based around
object location data. Regions that are calculated to have
the highest yields of dead objects, paired with the lowest
time costs, are collected first, forming what is called the
collection set. The collection set is then collected through
an evacuation pause, a process that ‘evacuates’ the collection
set regions by copying their live objects to other regions
throughout the heap, leaving the remaining dead objects to
be freed.

The nature of this process helps to maintain compaction
within the heap. Typically, when dead objects are freed, it
can leave heavily distributed pockets of space throughout the
heap. Copying the live objects to new regions throughout
the heap in an incremental fashion allows for the distributed



spaces to become contiguous. Contiguous spaces are useful
because they allow for objects to be cleanly copied or allo-
cated to regions. Instead of spending time searching for a
pocket of space that fits, objects can simply be placed on
the end of the last allocated object within a given region [6].

6. CONCLUSION
Having examined the many variations of GC that exist

within the Java HotSpot Virtual Machine, it is clear that
there does not exist any one modern GC strategy that vastly
exceeds the performance capabilities of another. This is be-
cause GC selection is an adaptive process. Not only do the
dynamics of the Java program play a part, but also do the
underlying computer systems that process it.

When we consider the increased memory capacities and
processing abilities of modern-day computer architecture,
there are three criteria that stand out:

(1) Incurring low stop-the-world pause-times.

(2) Achieving high throughput.

(3) Achieving low latency.

The HotSpot JVM garbage collectors described within this
paper address these criteria in many different and interest-
ing ways. For example, the CMS collector well addresses
both criteria (1) and (2) because of its concurrent behavior,
but also neglects criteria (3) for the same reason. Emphasis
on any one trait, such as high throughput or low latency,
can and will lead to deficiencies in another. The advan-
tage of garbage collecting on rapidly evolving computing ar-
chitectures is that we are given more and more leeway to
delegate these deficiencies on to the underlying computer
system. Bigger memory capacities, for example, allow us to
select memory intensive collection algorithms with less of a
risk to memory overhead.

So to conclude, the potential to benefit from GC lies not
only in your Java program itself, but also within your pro-
gram’s expected audience and computing environment(s).
Understanding this is crucial to effectively preparing for the
performance challenges that now exist, and may yet exist in
the future.

7. REFERENCES
[1] A. W. Appel, J. R. Ellis, and K. Li. Real-time

concurrent collection on stock multiprocessors. In
Proceedings of the ACM SIGPLAN 1988 conference
on Programming Language design and
Implementation, PLDI ’88, pages 11–20, New York,
NY, USA, 1988. ACM.

[2] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time
garbage collector with low overhead and consistent
utilization. In Proceedings of the 30th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’03, pages 285–298,
New York, NY, USA, 2003. ACM.

[3] D. F. Bacon, P. Cheng, and V. T. Rajan. A unified
theory of garbage collection. In Proceedings of the 19th
annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
OOPSLA ’04, pages 50–68, New York, NY, USA,
2004. ACM.

[4] T. Brecht, E. Arjomandi, C. Li, and H. Pham.
Controlling garbage collection and heap growth to

reduce the execution time of java applications. In
Proceedings of the 16th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, OOPSLA ’01, pages 353–366, New York,
NY, USA, 2001. ACM.

[5] O. Corporation. Java se 6 hotspotTMvirtual machine
garbage collection tuning, 2011. [Online; accessed
3-November-2011].

[6] D. Detlefs, C. Flood, S. Heller, and T. Printezis.
Garbage-first garbage collection. In Proceedings of the
4th international symposium on Memory management,
ISMM ’04, pages 37–48, New York, NY, USA, 2004.
ACM.

[7] D. Frampton, D. F. Bacon, P. Cheng, and D. Grove.
Generational real-time garbage collection. In ECOOP,
pages 101–125, 2007.

[8] R. Jones. Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. John
Wiley and Sons, July 1996. With a chapter on
Distributed Garbage Collection by Rafael Lins.
Reprinted 1997 (twice), 1999, 2000.

[9] T. Kalibera, F. Pizlo, A. L. Hosking, and J. Vitek.
Scheduling real-time garbage collection on
uniprocessors. ACM Trans. Comput. Syst.,
29:8:1–8:29, August 2011.

[10] Y. Levanoni and E. Petrank. An on-the-fly
reference-counting garbage collector for java. ACM
Trans. Program. Lang. Syst., 28:1–69, January 2006.

[11] S. Marlow, T. Harris, R. P. James, and
S. Peyton Jones. Parallel generational-copying garbage
collection with a block-structured heap. In Proceedings
of the 7th international symposium on Memory
management, ISMM ’08, pages 11–20, New York, NY,
USA, 2008. ACM.

[12] S. Microsystems. Memory management in the java
hotspotTMvirtual machine, 2006. [Online; accessed
20-October-2011].

[13] T. Printezis and D. Detlefs. A generational
mostly-concurrent garbage collector. In Proceedings of
the 2nd international symposium on Memory
management, ISMM ’00, pages 143–154, New York,
NY, USA, 2000. ACM.

[14] D. Vengerov. Modeling, analysis and throughput
optimization of a generational garbage collector. In
Proceedings of the 2009 international symposium on
Memory management, ISMM ’09, pages 1–9, New
York, NY, USA, 2009. ACM.

[15] M. Wegiel and C. Krintz. The mapping collector:
virtual memory support for generational, parallel, and
concurrent compaction. SIGPLAN Not., 43:91–102,
March 2008.

[16] Wikipedia. Garbage collection (computer science) —
wikipedia, the free encyclopedia, 2011. [Online;
accessed 4-October-2011].

[17] Wikipedia. Java (programming language) —
wikipedia, the free encyclopedia, 2011. [Online;
accessed 4-October-2011].

[18] B. Zorn. Comparing mark-and sweep and
stop-and-copy garbage collection. In Proceedings of the
1990 ACM conference on LISP and functional
programming, LFP ’90, pages 87–98, New York, NY,
USA, 1990. ACM.


