CSci 4651 Spring 2012
Problem Set 6: Storage management.
Due Friday, April 6th in class

IMPORTANT, please read before you start working on the prob-
lems: This problem set uses Java-like syntax for convenience. However, this is
NOT Java code. Read each problem carefully to understand which model you
are working in (pass-by-value vs. pass-by-reference, static vs. dynamic scope
rules, etc.). Assume that all code given below is syntactically correct and does
not cause any compilation errors. Assume that print("x = " + x) is a print-
ing command which works like System.out.println("x = " + x) in Java for
all types of variables used in this problem set.

Problem 1 (5 points). Consider the following code (the lines are numbered
for easy reference):

1 int x = 3;

2 {

3 int y = 5 + x;

4 {

5. int x = 2 + y;
6 X

7 X =y,

8 X

Question 1. Draw the program stack right after line 5 gets executed.
Question 2. What is the final value of the global x (the one defined on line 1)
in this program fragment?

Problem 2 (5 points). Consider the call £(2, -1) to the following function:

int £ (int x, int y) {
int z = 0;
int w = x * Xx;
if (y < 0) {
int z = -w;
print("z = " + z);
}

return z;

Question 1. Draw the program stack at the point right after the line
int z = -w;

is executed.

Question 2. What will be printed by the print statement? What will be the
value returned by the function? Explain your answers using the stack diagram
from Question 1.

Problem 3 (10 points). Which of the following Java methods are tail-
recursive? If a method is not tail-recursive, please write its tail-recursive version
(make sure to show the first call to the method that initializes the extra param-
eters, if any). Test your code and submit electronic solutions.

The source code is also linked from the assignments page for copy/pasting.

public class TailRecursion {
public static void main(String [] args) {
int [A =4{3, 6, 7, 5, 4};
int [1 B=4{3, 6, 5, 7, 9};

System.out.println("sum_array(A,0) = " + sum_array(A,0));
System.out.println("find(A,0,5) = " + find(A,0,5));
System.out.println("find(A,0,2) = " + find(A,0,2));
System.out.println("equal(A,B,0) = " + equal(A,B,0));
System.out.println("equal(A,A,0) = " + equal(A,A,0));
System.out.println("equal (A, new int[2],0) = " + equal(A, new int[2],0));

System.out.println("to_string_reverse(A,0)" + to_string reverse(A,0));

public static int sum_array(int [] A, int i) {
if (i < A.length) return (A[i] + sum_array(A, i+1));
return O;

3

public static boolean find(int [] A, int i, int x) {
if (i >= A.length) return false;
if (A[i] == x) return true;
return find(A, i+1, x);

3

public static boolean equal(int[] A, int[] B, int i) {
if (A.length == i && B.length == i) {
return true;
}
if (A.length == i || B.length == i) {
return false;
}
if (A[i] == B[i]) return equal(A, B, i+1);
else return false;

public static String to_string_reverse(int [] A, int i) {
if (i < A.length) {
return to_string reverse(A, i + 1) + " " + A[i];
}

return "";

Question 2. Describe how a tail-recursive function may be optimized. Explain
why the optimized program is more efficient (what overhead has been eliminated
by the optimization?).

Problem 4 (8 points). Consider the following function. Notice that the first
parameter is passed by reference, and the second one is passed by value.

int f(int &n, int m) {
n=mn+1;
m=m+ 1;
return n + m;

}

Question 1. Which of the following are valid calls to this functions? Assume
that all variables used below are of type int and A is an array of ints, and all
elements of the array referenced below are within the array boundary. Explain
your answers briefly.

o f(x + 1, 5)
o f(A[i+1], A[iD)
o f(2, 3)

o f(x, f(x, y))

Question 2. For the following function call please draw the function stack
right after f was called and right before f returns. What will be printed by the
program? Justify your answer using the stack diagram.

. main (...) {
int x = 2;
int y = 0;

y = f(x, x);
print x;
print y;

Problem 5 (10 points). Consider the following program, where main is the
first function in program execution. Parameters are passed by value.

int x = 2;
int y 3;

void f(int n) {
X = x + n;

y=Yy - n;
}
void main () {
int x = 1;
f(1);
{
int y = 5;
£(x);
}

Question 1. Assuming dynamic scope rules, draw the program stack at two
points in execution: right before the call £ (1) returns and right before the call
f (x) returns. Show values of all variables in the stack pictures.

Note that for the second function call the stack will have both kinds of
blocks: in-line blocks and those associated with a function.

Question 2. What are the final values of global x and y in the case of dynamic
scope rules? Use the stack pictures to explain your answer.

Questions 3 and 4. The same as 1 and 2, but for static (lexical) scope rules.

Problem 6 (8 points). Consider the following program where main is the first
function in program execution. Assume the static scope rules. int -> int is
the type of functions from an integer to another integer.

int x = 0;

int f(int a) {
if (a == 1) return x;
else {
X =x + a;
return f(a - 1);

}

void g (int -> int h) {
int x = 5;
print (h(2));

}

void main () {
g(f);
}

Question 1. Note that f is recursive. Draw the program stack and function
closures when all activation records for f are pushed on the stack.

Question 2. What is going to be printed in the program? Use the stack picture
to explain your answer.

Problem 7 (8 points). Assume the static scope rules and notations as in
the previous problem. Consider the following code fragment, where f returns a
function g. The function type void -> void means that the function takes no
parameters and does not return a value.

void -> void f () {
int x = 0;
return (void gO) { x=x+ 1; });

}

void main () {
void -> void h
h(Q;
void -> void j

FjO;

£0O;

£0O;

© 00 NO O WN -

10. }

Draw the program stack and all the function closures at the following points of
the program execution:

1. Right before line 7 is executed.
2. Right after line 7 is executed.
3. Right after line 8 is executed.
4. Right after line 9 is executed.

Show the values of all variables.

