Chapter 8: Inference for Means 

8.2 Comparing Two Proportions

Overview
Confidence intervals and tests designed to compare two population proportions are based on the difference in the sample proportions 
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When both sample sizes are sufficiently large, the sampling distribution of the difference D is approximately normal. Inference procedures for comparing proportions are z procedures based on the normal approximation and on standardizing the difference D. The first step is to obtain the mean and standard deviation of D. By the addition rule for means, the mean of D is the difference of the means:
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That is, the difference 
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 between the sample proportions is an unbiased estimator of the population difference 
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. Similarly, the addition rule for variances tells us that the variance of D is the sum of the variances:
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When 
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 are large, D is approximately normal with mean 
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Significance tests

Significance tests for the equality of the two proportions, 
[image: image15.wmf]2

1

0

:

p

p

H

=

 , use a different squared error for the difference in the same proportions which is based on a pooled estimate of the common (Under 
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	Significance test for Comparing Two Proportions


To test the hypothesis   
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compute the z-statistic
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where the pooled standard error is
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and where
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In terms of a standard normal random variable Z, the P-value for a test of 
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Example. Are men and women college students equally likely to be frequent binge drinkers? We examine the survey data to answer the question. Here is the data summary:

	Population 
	n
	X
	
[image: image31.wmf]n

X

p

=

ˆ



	1(men)
	7180
	1630
	0.227

	2(women)
	9916
	1684
	0.17

	Total 
	17096
	3314
	0.194


The sample proportions are certainly quite different, but we will perform a significance test to see if the difference is large enough to lead us to believe that the population proportions are not equal. Formally, we test the hypotheses
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The pooled estimate of the common value of 
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The test statistic is calculated as follows:
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The P-value is 
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.The largest value of z in Table A is 3.49, so from this table we can conclude 
[image: image40.wmf]0004

.

0

0002

.

0

2

=

´

<

P


Since P-value is less than 
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We report:  among college students in the study, 22.7% of the men and 17% of the women were frequent binge drinkers; the difference is statistically significant (z=9.34, P<0.0004).
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