11. Simple Linear Regression
Learning Objectives
· Describe the Linear Regression Model

· State the Regression Modeling Steps

· Explain Ordinary Least Squares

· Compute Regression Coefficients

· Predict Response Variable

· Interpret Computer Output

Models
· Representation of Some Phenomenon
· Mathematical Model Is a Mathematical Expression of Some Phenomenon
· Often Describe Relationships between Variables
· Types
· Deterministic Models

· Probabilistic Models

Deterministic Models
1.
Hypothesize Exact Relationships
2.
Suitable When Prediction Error is Negligible
3. Example: Force Is Exactly Mass Times Acceleration
· F = m·a
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Probabilistic Models
1. Hypothesize 2 Components
· Deterministic

· Random Error
  Y = Deterministic component + Random Error

  where Y is the variable of interest.

2. Example: Sales Volume Is 10 Times Advertising Spending + Random Error
· Y = 10X + (
· Random Error May Be Due to Factors Other Than Advertising

Types of Probabilistic Models
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A First-Order (Straight-Line) Probabilistic Model
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where

y is the dependent (or response) variable,
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 is the independent (or predictor) variable,
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 is the deterministic portion of the model, 
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 is y-intercept of the line, and
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  is slope of the line.
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Regression Models
1.
Answer ‘What Is the Relationship Between the Variables?’
2.
Equation Used
· 1 Numerical Dependent (Response) Variable

· What Is to Be Predicted
· 1 or More Numerical or Categorical Independent (Explanatory) Variables
3.
Used Mainly for Prediction & Estimation
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Regression Modeling Steps 

1.
Hypothesize Deterministic Component

2.
Estimate Unknown Model Parameters

3. Specify Probability Distribution of Random Error Term
· Estimate Standard Deviation of Error

4.
Evaluate Model

5.
Use Model for Prediction & Estimation 
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Sample Linear Regression Model
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Origins of Regression:

“Regression Analysis was first developed by Sir Francis Galton in the latter part of the 19th Century.  Galton had studied the relation between heights of fathers and sons and noted that the heights of sons of both tall & short fathers appeared to ‘revert’ or ‘regress’ to the mean of the group.  He considered this tendency to be a regression to ‘mediocrity.’  Galton developed a mathematical description of this tendency, the precursor to today’s regression models.” (From page 6 of Neter, Kutner, Nachtsheim, and Wasserman, 1996).

Regression Line 

The regression line is a straight line that describes how a response variable y changes as an explanatory variable x changes. We often use a regression line to predict the value of y for a given value of x.
Table. Mean height of children in Kalama, Egypt, age from 18 to 29 months.

[image: image10.emf]
Scattergram
1.
Plot of All (Xi, Yi) Pairs

2.
Suggests How Well Model Will Fit


[image: image11.emf]
Figure. Mean height of children in Kalama, Egypt, plotted against age from 18 to 29 months, from Table 2.7.


[image: image12.emf]
Figure.  The regression line fitted to the Kalama data and used to predict height at age 32 months.

In Figure, we have drawn the regression line with the equation

Height = 64.93+(0.635 
[image: image13.wmf]´

 age)

It means that b=0.635 is the slope of the line and a=64.93 is the intercept.

If we substitute 32 for the age in the equation,

 Height = 64.93+(0.635 
[image: image14.wmf]´

 32)=85.25 centimeters.
How would you draw a line through the points?   How do you determine which line ‘fits best’?

Least Squares
1.
‘Best Fit’ Means Difference Between Actual Y Values & Predicted Y Values Are a Minimum

· But Positive Differences Off-Set Negative

The least squares regression line is the straight line 
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 which minimizes the sum of the squares of the vertical distances between the line and the observed values y. 

[image: image16.wmf]å

å

-

=

2

2

)

(

)

(

y

predicted

y

observed

error


2. LS Minimizes the Sum of the Squared Differences (SSE)

Least Square regression

If we predict 85.25 centimeters for the mean height at age 32 months and the actual mean turns out to be 84 centimeters, our error is

Error = observed height – predicted height

         = 84 -85.25 = -1.25 centimeters


[image: image17.emf]Figure  The least-squares idea: make the errors in predicting y as small as possible by minimizing the sum of their squares.

Least Squares Graphically
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Coefficient Equations
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Interpretation of Coefficients
1.
Slope ((1_hat)
· Estimated Y Changes by (1_hat for Each 1 Unit Increase in X
· If (1 hat = 2, then Sales (Y) Is Expected to Increase by 2 for Each 1 Unit Increase in Advertising (X)
2.
Y-Intercept ((0_hat)

·    Average Value of Y When X = 0
· If (0_hat = 4, then Average Sales (Y) Is Expected to Be 4 When Advertising (X) Is 0

Parameter Estimation Example

[image: image20]
You’re a marketing analyst for Hasbro Toys.  You gather the following data:


Ad $
Sales (Units)

1
             1

2
             1

3
             2

4
             2

5
             4
What is the relationship between sales & advertising?
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Parameter Estimation Solution
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Coefficient Interpretation 
1.
Slope ((1_hat)

· Sales Volume (Y) Is Expected to Increase by .7 Units for Each $1 Increase in Advertising (X)

2.
Y-Intercept ((0_hat)

· Average Value of Sales Volume (Y) Is 
-.10 Units When Advertising (X) Is 0

· Difficult to Explain to Marketing Manager

· Expect Some Sales Without Advertising

Parameter Estimation Computer Output
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Typically, the equation of the least squares regression line is obtained by computer software with a regression function. 

Excel output from Barry Bonds Statistics
	 
	Coefficients
	

	Intercept
	39.7618446
	

	  Slope
	1.568414403
	

	
	
	

	RESIDUAL OUTPUT
	

	
	
	

	Observation
	Predicted  RBI
	Residuals

	1
	64.85647505
	-16.8564750

	2
	78.97220467
	-19.9722046

	3
	77.40379027
	-19.4037902

	4
	69.56171826
	-11.5617182

	5
	91.5195199
	22.4804801

	6
	78.97220467
	37.02779533

	7
	93.0879343
	9.912065698

	8
	111.9089071
	11.09109286

	9
	97.79317751
	-16.7931775

	10
	91.5195199
	12.4804801

	11
	105.6352495
	23.36475047

	12
	102.4984207
	-1.49842072

	13
	97.79317751
	24.20682249

	14
	93.0879343
	-10.0879343

	15
	116.6141503
	-10.6141503

	16
	154.256096
	-17.2560960

	17
	91.5195199
	-16.5195199


From Dr. Chris Bilder’s website.

Select Tools > Data Analysis from the main Excel menu bar to bring up the Data Analysis window.  Select Regression and OK to produce the Regression window.  Below is the finished window.  
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The Residual option produces the residuals in the output.  The Line Fit Plots option produces a plot similar to a scatter plot with an estimated regression line plotted upon it.  

Notice the above output does not look exactly like a scatter plot with estimated regression line plotted upon it.  Below is one way to fix the plot.  Note that other steps are often necessary to make the plot more “professional” looking (changing the scale on the axes, adding tick marks, changing graph titles, etc…) 

1) Change background from grey to white

a) Right click on the grey background (a menu should appear)

b) Select format plot area to bring up the following window:
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i) Select None as the area

ii) Select OK
2) Remove legend

a) Right click in the legend

b) Select Clear
3) Create the regression line

a) Right click on one of the estimated Y values (should be in pink) and a menu should appear

b) Select Format Data Series to bring up the following window: 
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i) Under Marker, select None
ii) Under Line, select Automatic 

iii) Select OK
Linear Regression Assumptions 
1. Mean of Probability Distribution of Error Is 0

2.
Probability Distribution of Error Has Constant Variance

3. Probability Distribution of Error is Normal

4. Errors Are Independent

Error Probability Distribution
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Measures of Variation in Regression 
1.
Total Sum of Squares (SSyy)

· Measures Variation of Observed Yi Around the Mean(Y

2.
Explained Variation (SSR)

· Variation Due to Relationship Between 
X & Y
3.
Unexplained Variation
 (SSE)

· Variation Due to Other Factors

Variation Measures
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Estimaton of  
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We will refer to  s  as the estimated standard error of the regression model.

Interpretation of s, the estimated Standard Deviation of 
[image: image32.wmf]e


We expect most (95%) of the observed y values to lie within 2s of their respective least squares predicted value, 
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Test of Slope Coefficient
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Sampling Distribution of Sample Slopes
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Slope Coefficient Test Statistic
Test of an Individual parameter Coefficient in the Simple Linear Regression Model

One-Tailed Test
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Two-Tailed Test
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Test statistic
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where  
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Rejection region
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where 
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Reject 
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where 
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Coefficient of Correlation
Scatterplots provide a visual tool for looking at the relationship between two variables. Unfortunately our eyes are not good tools for judging the strength of the relationship. Changes in the scale or the amount of white space in the graph can easily affect our judgement as to the strength of the relationship. Correlation is a numerical measure we will use to show the strength of linear association.


[image: image55.emf]
Figure 2.9 Two scatterplots of the same data

  Correlation 

The correlation measures the direction and strength of the linear relationship between two quantitative variables. Correlation is usually denoted by 
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.

Suppose that we have data on variables x and y for n individuals. The mean and standard deviations of the two variables are 
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 and 
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for the x-values, and 
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for the y-values.

The correlation coefficient 
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 between x and y is
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The correlation coefficient 
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  has possible values between negative one and positive one. That is, 
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. 
When 
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 is positive it means that there is a positive linear association between the variables and when it is negative there is a negative linear association. A scatterplot for a dataset with 
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 would have points on a perfectly straight upward sloping pattern. All points would fall on a straight line. A scatterplot for a datset with 
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 would have points on a perfectly straight downward sloping line. A value of 
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 like 
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 would give a scatterplot with a blob shape and no apparent upward or downward trend. 
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Figure  How the correlation 
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 measures the direction and strength of linear association. 
Coefficient of Determination
Proportion of Variation “Explained” by Relationship between X and Y
      r2 = Explained Variation / Total variation 
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Practical Interpretation of the Coefficient of Determination

100 (r2) % of the variation in y can be explained by using x to predict y in the straight-line model. 

Coefficient of Determination Examples
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Coefficient of Determination Example
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Prediction With Regression Models
1.
Types of Predictions

· Point Estimates

· Interval Estimates

2.
What Is Predicted

· Population Mean Response E(Y) for Given X
· Point on Population Regression Line

· Individual Response (Yi) for Given X

What Is Predicted
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Confidence Interval Estimate of Mean Y
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Factors Affecting Interval Width

[image: image75]
Why Distance from Mean?
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Confidence Interval Estimate Example
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Confidence Interval Estimate Solution

[image: image78]
Prediction Interval of Individual Response
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Why the Extra ‘S’?
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Interval Estimate Computer Output
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Hyperbolic Interval Bands
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Let’s look at Examples 11.3 and 11.4 in our textbook (page # 553).
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i = Random error
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k





^





1





^





0





			    Parameter Estimates





            Parameter Standard T for H0:


Variable DF  Estimate    Error   Param=0  Prob>|T|


INTERCEP  1   -0.1000   0.6350    -0.157    0.8849


ADVERT    1    0.7000   0.1914     3.656    0.0354





Yi 





^











Explained sum of squares (Yi -Y)2 





^





Unexplained sum of squares (Yi -Yi)2 





Total sum of squares (Yi -Y)2 
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r2 = .8





r2 = 1





r2 = 1





r2 = 0
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You’re a marketing analyst for Hasbro Toys.  You find 0 = -0.1 & 1 = 0.7.


	Ad $	Sales (Units)�	1	          1�	2	          1�	3	          2�	4	          2�	5	          4


Interpret a coefficient of �determination of  0.8167.
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^





S





1





1





Sampling Distribution





All Possible �Sample Slopes


	Sample 1:	2.5


	Sample 2:	1.6  


	Sample 3:	1.8


	Sample 4:	2.1�             :             :�Very large number of sample slopes





� EMBED Unknown  ���











1.	Shows If There Is a Linear Relationship Between X & Y 


2.	Involves Population Slope 1


3.	Hypotheses 


H0: 1 = 0 (No Linear Relationship) 


Ha: 1  0 (Linear Relationship) 


4.	Theoretical Basis Is Sampling Distribution of Slope
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1.	Level of Confidence (1 - )


Width Increases as Confidence Increases


2.	Data Dispersion (s)


Width Increases as Variation Increases


3.	Sample Size


Width Decreases as Sample Size Increases


4.	Distance of Xp from MeanX


Width Increases as Distance Increases




















Greater dispersion than X1





X











You’re a marketing analyst for Hasbro Toys.  You find b0 = -.1, b1 = .7 & s = .60553.


	Ad $	Sales (Units)�	1	               1�	2	               1�	3	               2�	4	               2�	5	               4


Estimate the mean sales when �advertising is $4 at the .05 level.





X to be predicted
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Note!
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Prediction Interval





^





SY





Confidence Interval





Predicted Y when X = 4





  Dep Var  Pred Std Err Low95% Upp95%  Low95%  Upp95%


Obs SALES Value Predict   Mean   Mean Predict Predict


 1  1.000 0.600   0.469 -0.892  2.092  -1.837   3.037 


 2  1.000 1.300   0.332  0.244  2.355  -0.897   3.497


 3  2.000 2.000   0.271  1.138  2.861  -0.111   4.111


 4  2.000 2.700   0.332  1.644  3.755   0.502   4.897 


 5  4.000 3.400   0.469  1.907  4.892   0.962   5.837
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