12. Multiple Regression Models
[image: image1]
Learning Objectives
1.
Explain the Linear Multiple Regression Model

2.
Test Overall Significance

3.
Describe Various Types of Models

4.
Evaluate Portions of a Regression Model

5. 
Interpret Linear Multiple Regression  Computer Output

6.  
Describe Stepwise Regression

7.  
Explain Residual Analysis

8.  
Describe Regression Pitfalls

Most practical applications of regression analysis utilize models that are more complex than the simple straight-line model. For example, a realistic probabilistic model for reaction time would include more than just the amount of a particular drug in the bloodstream. Factors such as age, a measure of visual perception, and sex of the subjects are a few of the many variables that might be related to reaction time.
Regression Modeling Steps 
1.
Hypothesize Deterministic Component

2.
Estimate Unknown Model Parameters

3.
Specify Probability Distribution of Random Error Term

· Estimate Standard Deviation of Error

4.
Evaluate Model

5.
Use Model for Prediction & Estimation 
Probabilistic models that include more than one independent variable are called multiple regression models. The general form of these models is 
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The dependent variable 
[image: image2.wmf]Y

 is now written as a function of k independent variables,
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The random error term is added to make the model probabilistic rather than deterministic. The value of the coefficient 
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 is the y-intercept. The coefficients  
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 are usually unknown because they represent population parameters.
Actually, 
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 can be functions of variables as long as the functions do not contain unknown parameters. 

For example, the reaction time, Y, of a subject to a visual stimulus could be a function of the independent variables
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The 
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 term is called a higher-order term, since it is the value of a quantitative variable (
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) squared (i.e., raised to the second power). The 
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 term is an indicator variable representing a qualitative variable (gender). 

The General Multiple Regression Model
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where

Y is the dependent (or response) variable,
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 is the deterministic portion of the model, 
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 determines the contibution of the independent variable 
[image: image19.wmf]i

x

.
Population Multiple Regression Model
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Analyzing a Multiple Regression Model
1. Hypothesize the deteministic component of the model. This component relates the mean, E(Y), to the independent variables  
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. This involves the choice of the independent variables to be included in the model.
2. Use the sample data to estimate the unknown model parameters 
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 in the model
3. Specify the probability distribution of the random error term, 
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, and estimate the standard deviation of this distribution, 
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 . 

4. Check that the assumption on 
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 are satisfied, and make model modification if necessary.
5. Statistically evaluate the usefulness of the model
6. When satisfied that the model is useful, use it for prediction, estimation, and other purposes.  

Multiple linear regression

Two or more independent variables are used to estimate 1 dependent variable.
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Notes:

1) (i~independent N(0,(2)

2) (0, (1, …,(p-1 are parameters with corresponding estimates of 
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3) Xi1,…,Xi,p-1 are known constants 
4) The second subscript on Xij denotes the jth independent variable.  

5) i=1,…n

Parameter Estimation Example
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Interpretation of Coefficients Solution
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Assumptions for Random Error 
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1. For any given of values of 
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 has a normal probability distribution with mean equal to 0 and variance equal to 
[image: image35.wmf]2

s

.

2. The random errors are independent.

Estimator of  
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 parameters
Test of an Individual parameter Coefficient in the Multiple Regression Model
One-Tailed Test
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Two-Tailed Test
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Test statistic
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where 
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 is based on n-(k+1) degree of freedom.

            n= Number of observations

            k+1=Number of 
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 parameters in the model.

Testing Overall Significance
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Testing Global Usefulness of the Model of the Model: The Analysis of Variance F-Test 
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(All model terms are unimportant for predicting y)
Ha: At least one 
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(At least one model term is useful for predicting y)
Test statistic
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Testing Overall Significance Computer Output
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Types of Regression Models
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First-Order Model With 1 Independent Variable
1.
Relationship Between 1 Dependent & 1 Independent Variable is Linear
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2.
Used When Expected Rate of Change in Y Per Unit Change in X is Stable

3. Used With Curvilinear Relationships If Relevant Range Is Linear
First-Order Model Relationships
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Second-Order Model With 1 Independent Variable
1.
Relationship Between 1 Dependent & 1 Independent Variables Is a Quadratic Function

2.
Useful 1St Model If Non-Linear Relationship Suspected

3.
Model
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[image: image62]
Third-Order Model With 1 Independent Variable
1.
Relationship Between 1 Dependent & 1 Independent Variable Has a ‘Wave’

2.
Used If 1 Reversal in Curvature

3.
Model
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Third-Order Model Relationships
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First-Order Model With 2 Independent Variables
1.
Relationship Between 1 Dependent & 2 Independent Variables Is a Linear Function

2.
Assumes No Interaction Between X1 & X2
· Effect of X1 on E(Y) Is the Same Regardless of X2 Values

3.
Model
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No Interaction
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First-Order Model Relationships
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Interaction Model With 2 Independent Variables
1.
Hypothesizes Interaction Between Pairs of X Variables

· Response to One X Variable Varies at Different Levels of Another X Variable

2.
Contains Two-Way Cross Product Terms 
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3.
Can Be Combined With Other Models 

· Example: Dummy-Variable Model

Effect of Interaction 
1.
Given:
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2.
Without Interaction Term, Effect of X1 on Y  Is Measured by (1
3.
With Interaction Term, Effect of X1 on Y Is Measured by (1 + (3X2
· Effect Increases As X2i Increases 

Interaction Model Relationships
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Second-Order Model With 2 Independent Variables
1.
Relationship Between 1 Dependent & 2 or More Independent Variables Is a Quadratic Function

2.
Useful 1St Model If Non-Linear Relationship Suspected

3.
Model 
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Second-Order Model Relationships
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Types of Regression Models
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Dummy-Variable Model
1.
Involves Categorical X Variable With 2 Levels

· e.g., Male-Female; College-No College

2.
Variable Levels Coded 0 & 1

3.
Number of Dummy Variables Is 1 Less Than Number of Levels of Variable

4.
May Be Combined With Quantitative Variable (1st Order or 2nd Order Model)

Interpreting Dummy-Variable Model Equation
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Dummy-Variable Model Relationships
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Dummy-Variable Model Example
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Residual Analysis
1.
Graphical Analysis of Residuals

· Plot Estimated Errors vs. Xi Values

· Difference Between Actual Yi   & Predicted Yi
· Estimated Errors Are Called Residuals

· Plot Histogram or Stem-&-Leaf of Residuals

2.
Purposes

· Examine Functional Form (Linear vs. 
Non-Linear Model)

· Evaluate Violations of Assumptions

Linear Regression Assumptions 
1.
Mean of Probability Distribution of Error Is 0

2.
Probability Distribution of Error Has Constant Variance

3.
Probability Distribution of Error is Normal

4.
Errors Are Independent

Multicollinearity
1.
High Correlation Between X Variables

2.
Coefficients Measure Combined Effect

3.
Leads to Unstable Coefficients Depending on X Variables in Model

4.
Always Exists -- Matter of Degree

5.
Example:  Using Both Age & Height as Explanatory Variables in Same Model 

Detecting Multicollinearity
1.
Examine Correlation Matrix

· Correlations Between Pairs of X Variables Are More than With Y Variable

2.
Examine Variance Inflation Factor (VIF)

· If VIFj > 5, Multicollinearity Exists

3.
Few Remedies

· Obtain New Sample Data

· Eliminate One Correlated X Variable

Correlation Matrix Computer Output
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Variance Inflation Factors Computer Output

[image: image72]
Extrapolation
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1.	Slope (k)


Estimated Y Changes by k for Each 1 Unit Increase in Xk Holding All Other Variables Constant


Example: If 1 = 2, then Sales (Y) Is Expected to Increase by 2 for Each 1 Unit Increase in Advertising (X1) Given the Number of Sales Rep’s (X2) 


2.	Y-Intercept (0)


Average Value of Y When Xk = 0





^











Random error





Population �Y-intercept





Population slopes





Independent (explanatory) variables





Dependent (response) variable





Bivariate model





1.	Relationship between 1 dependent & 2 or more independent variables is a linear function





� EMBED Equation.3  ���





� EMBED Unknown  ���
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You’ve collected the following data: 	


Resp	Size	Circ


	1	  1	        2�	4	  8	        8�	1	  3	        1�	3	  5	        7�	2	  6	        4�	4	10	        6





You work in advertising for the New York Times.  You want to find the effect of ad size (sq. in.) & newspaper circulation (000) on the number of ad responses (00).
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1





0





2
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			    Parameter Estimates


           Parameter Standard T for H0:


Variable DF Estimate    Error Param=0  Prob>|T|


INTERCEP  1   0.0640   0.2599  0.246     0.8214





ADSIZE    1   0.2049   0.0588  3.656     0.0399





CIRC      1   0.2805   0.0686  4.089     0.0264
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^





1.	Slope (1)


# Responses to Ad Is Expected to Increase by .2049 (20.49) for Each 1 Sq. In. Increase in Ad Size Holding Circulation Constant





2.	Slope (2)


# Responses to Ad Is Expected to Increase by .2805 (28.05) for Each 1 Unit (1,000) Increase in Circulation Holding Ad Size Constant





1.	Shows If There Is a Linear Relationship Between All X Variables Together & Y


2.	Uses F Test Statistic


3.	Hypotheses


H0: 1 = 2 = ... = k = 0 


No Linear Relationship


Ha: At Least One Coefficient Is Not 0 


At Least One X Variable Affects Y





MS(Model) MS(Error)





P-Value





n - 1





n - k -1





k





Analysis of Variance


              Sum of     Mean 


Source  DF   Squares   Square   F Value   Prob>F


Model    2    9.2497    4.6249   55.440   0.0043





Error    3    0.2503    0.0834





C Total  5    9.5000
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Curvilinear effect





Linear effect





� EMBED Equation.3  ���
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Curvilinear effects





Linear effect





� EMBED Equation.3  ���





3 > 0





3 < 0

















E(Y) = 1 + 2X1 + 3(3) = 10 + 2X1 





� EMBED Equation.3  ���





E(Y) = 1 + 2X1 + 3(0) = 1 + 2X1 





E(Y) = 1 + 2X1 + 3(1) = 4 + 2X1 





E(Y) = 1 + 2X1 + 3X2





E(Y) = 1 + 2X1 + 3(2) = 7 + 2X1 
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Effect (slope) of X1 on E(Y) does not depend on X2 value
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E(Y) = 1 + 2X1 + 3(0) + 4X1(0) = 1 + 2X1 





E(Y) = 1 + 2X1 + 3(1) + 4X1(1) = 4 + 6X1 





E(Y) = 1 + 2X1 + 3X2 + 4X1X2 
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32 > 4 4 5 





4 + 5 < 0
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Correlation Analysis


Pearson Corr Coeff /Prob>|R| under HO:Rho=0/ N=6


           RESPONSE    ADSIZE     CIRC


RESPONSE    1.00000   0.90932  0.93117


             0.0       0.0120   0.0069  


ADSIZE      0.90932   1.00000  0.74118


             0.0120    0.0      0.0918 


CIRC        0.93117   0.74118  1.00000


             0.0069    0.0918   0.0   





VIF1  5





           Parameter Standard T for H0:


Variable DF Estimate    Error Param=0  Prob>|T|


INTERCEP  1   0.0640   0.2599  0.246     0.8214


ADSIZE    1   0.2049   0.0588  3.656     0.0399


CIRC      1   0.2805   0.0686  4.089     0.0264


             Variance


Variable DF Inflation


INTERCEP  1    0.0000


ADSIZE    1    2.2190 


CIRC      1    2.2190 





Relevant Range





Extrapolation





Extrapolation





X





Interpolation
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