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I. An example.

II. Matrix step. ABC = 1

(Katz’s theory of rigid local systems)

III. Polynomial step. A(x) +B(x) +C(x) = 0

(Theory of dessins d’enfants)

IV. Integer step. axp + byq + czr = 0

(Along the lines of the ABC conjecture)

V. Further directions.
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I. An example. The polynomial

f(x) =

x27 − 432x21 − 810x19 − 7056x18

−39852x15 + 93312x13 − 254016x12

−98415x11 + 625968x10 − 1168560x9

+1705860x7 − 1796256x6 − 944784x5

+979776x4 + 31104x3 − 571536x

−592704

is unusual in two ways:

• The Galois group of its splitting field is
PSp4(F3).2, which is nonsolvable of order
51,840 = 27345.

• The discriminant of the root field Q[x]/f(x)
is 220384, reflecting tame ramification at 2
and wild ramification at 3.

How can we systematically produce poly-
nomials of this sort?
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II. Matrix Step. Consider matrices A, B, C ∈
GLn(F`) such that

• ABC = I

• 〈A,B,C〉 acts irreducibly on F`.

• the sum of the centralizer dimensions of

the matrices is maximal, namely

cd(A) + cd(B) + cd(C) = n2 + 2.

Such a triple is rigid in the sense that the indi-

vidual conjugacy classes [A], [B], [C] determine

the conjugacy class of the triple (A,B,C).

See (Katz, Rigid Local systems) for the very

rich theory: rigid matrix triples are classified

and they all come by reduction modulo ` from

motivic monodromy representations.
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Example of a rigid matrix triple in GL4(F3):

A =


0121
0102
1011
0100

 ∼


1100
0110
0011
0001



B =


0001
0020
0100
2000

 ∼


i000
0i00
00̄ı0
000̄ı



C =


0010
0002
1000
0200

 ∼


1000
0100
00i0
000̄ı


ABC = I holds by direct computation. Irre-
ducibility holds because 〈A,B,C〉 = Sp4(F3).
The two sides of the rigidity condition are

(1 + 1 + 1 + 1) + (4 + 4) + (4 + 1 + 1) = 18

and

42 + 2 = 18

so the rigidity condition holds.
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III. Polynomial step. Consider permutations
A, B, C ∈ SN such that ABC = e. Such a triple
determines a covering of algebraic curves over
Q

F : X → P1

ramified only above 0, 1, ∞ ∈ P1.

Theorem. (1960’s; Grothendieck) F has
bad reduction within the primes dividing the or-
der of the global monodromy group 〈A,B,C〉.

Theorem. (1990’s; Katz) If A, B, C come
from the rigid matrix situation of Part II via
some representation 〈A,B,C〉 → GLn(F`) then
F has bad reduction within the primes dividing
the orders of the local monodromy groups 〈A〉,
〈B〉, 〈C〉 and `.

(Intuitively, “Katz three point covers” are
extremal among all three point covers, and
are very special, sharing some of the fea-
tures of X0(`)→ j-line.)
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From degree 27 permutations corresponding
to the matrices A, B, C of Part II, we com-
puted

a(x) = 212(3x3 − 3x− 1)9

b(x) = f10(x)2f6(x)

c(x) = (48x3 + 108x2 + 63x+ 11)g6(x)4

with

a(x) + b(x) + c(x) = 0.

The corresponding cover is

F : P1 → P1 : x 7→ −
a(x)

c(x)
,

The discriminant of f(t, x) = a(x) + tc(x) is

D(t) = 23363450t24(t− 1)10,

illustrating the good reduction theorems.

(Summary so far: f(t, x) is an analog of di-
vision polynomials corresponding to `-torsion
points on a general elliptic curve. Katz’s
theory gives a hierarchy of such polynomi-
als, but at present they are hard to com-
pute.)
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IV. Integer step. Continuing with our exam-

ple, for generic τ ∈ Q − {0,1}, f(τ, x) is irre-

ducible and

Kτ = Q[x]/f(τ, x)

is a number field. If τ = −ax9/cz4 with

ax9 + by2 + cz4 = 0,

then Kτ is ramified within the primes dividing

6abc. The specialization point τ = −48, corre-

sponding to

243− 72 + 1 = 0

gives our field K−48, which has the unusual

property mentioned before of being only tamely

ramified at 2.

V. Future directions. Systematically study

the ramification in these “ABC number fields”

Q[x]/f(τ, x), as a function of the discrete group-

theoretic data defining the Katz three point

cover and the continuous parameter τ .
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