CHEBYSHEV COVERS AND EXCEPTIONAL NUMBER FIELDS
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ABSTRACT. We define rational functions T, n(z) and Um,n(z) in Q(z) by
simple explicit formulas involving the classical Chebyshev polynomials ¢, (z)
and uqw (z). We show that these functions, viewed as covers of one projective
line by another, are very remarkable from the point of view of Grothendieck’s
theory of dessins d’enfants. The fibers of these covering maps are likewise very
remarkable from the point of view of algebraic number theory. For example,
the fiber of Ui2s,128 above 5 is given by a degree 15875 polynomial in Z[x]
with discriminant —2130729563437 and Galois group the entire symmetric group
S15875-

1. INTRODUCTION

The Chebyshev covers of our title are the rational functions

T y2(2)™ Um/g(l‘)gn
Tn/Z(m)m, Un/2(x)2m

indexed by positive integers m and n. Here Ty, (), Uy (x) € Z[x, vz + 2,Vx — 2]
are completions by factors of v/ + 2 and/or /a — 2 of the classical Chebyshev
polynomials, as explained in Section 2. Square roots cancel so that T, ,(z) and
Upmn(z) are always in Q(z). The theory quickly reduces to the cases where m and
n are relatively prime with m < n and, in the U case, not both odd. Henceforth
we restrict to these cases. We use the word “cover” because our main point of
view is that the T}, , and U, , are functions from the complex projective line with
coordinate x to another complex projective line with coordinate s.

It is often convenient to clear denominators and work with polynomials. Accord-
ingly, let

(1.1) T (x) = Unon(z) =

T (0, )
Tonn (00, )’

Upn.n (0, )

(12) Tm,n(-r) = Um n(OO ‘I))

Um,n (w) =

in lowest terms, with monic numerator and denominator in Z[z]. For s € C, let

(1.3) T (s, x) = T n (0, 2) — sT, (00, ),
(1.4) Unmon(s,2) = Upn(0,2) — sUp, n(00, ).

Then the fibers above s are given as the roots of the corresponding polynomials.

A fundamental aspect of our objects is that degrees grow quadratically with
the indices. If m and n have opposite parity, then T, /o(x)" and T), /5 (x)™/2 are
already in Z[z]. There is no cancellation between numerator and denominator and
50 Ty,.n, considered either as a rational function or a family of polynomials, has
degree mn /2. Otherwise there is cancellation and T, , has degree m(n —1)/2 and
Up,n has degree m(n — 1).
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Sections 3-5 establish facts about Chebyshev covers. The main critical values
of these covers are s = 0, s = 1, and s = co. Besides the obvious critical points
in the preimages of these critical values, we show that there are |(k — 1)/2] other
critical points, with k always n—m throughout this paper. The main result of these
sections is Theorem 4.1, which gives the polynomial discriminant of T,,, ,, (s, z) and
Umn(s,z). This theorem says in particular that most of the bad reduction of
Chebyshev covers—all of it if kK = 1,2—is at primes dividing mn.

Sections 6-8 continue our study of Chebyshev covers. We restrict attention to
the cases k = 1,2, so that all ramification is above 0, 1 and co. For these k,
we work in the greater generality of quasiChebyshev covers, defined to be three
point covers having ramification partitions \g, A1, and A, agreeing with those of a
Chebyshev cover. The main result of these sections is Theorem 8.1. It says that the
monodromy group of a quasiChebyshev cover without non-trivial automorphisms
is the full alternating or symmetric group on the degree.

Sections 9-12 concern the algebras Q[z]/Th, n(s,x) and Q[z]/Upm n(s,z) and
closely related number fields. Section 9 concerns p-adic ramification, finding that it
is highly regular and not as wild as allowed by degrees. Section 10 discusses cases
with s = +1 where Galois groups are mysteriously imprimitive. Sections 11 and 12
provide examples of number fields which are exceptional in the sense of [7]. The
most extreme example is given by the polynomial Usgs128(5,2) which has degree
125(128 — 1) = 15875. Its discriminant is —2130729503437 and the Galois group of
its splitting field K is all of Si5875. Readers interesting in getting as quickly as
possible to exceptional number fields can simply check our conventions with regard
to Chebyshev polynomials in Section 2 and then skip immediately to Sections 11
and 12.

An interesting comparison with Chebyshev covers is given by covers A,, ,(x) =
k~*x™(n — mz)* coming from trinomials [6, Section 10]. To obtain the simplest
comparison, we still impose our standing conventions (m,n) = 1 and k = n—m > 0.
In analogy with our Theorem 4.1, for A,, (s, ) = 2™(n — mx)* — sk* one has the
discriminant formula D(A,, ,(s,z)) = £n"mFO- D=1 gn=2(5 1) 50 that bad
reduction is at primes dividing mnk. In analogy with Theorem 8.1, the monodromy
group is the full symmetric group S,. The p-adic behavior of specialized number
fields is highly regular, with A,, (s, ) being studied in [4] for s € Q — {0,1} and
Apon(1,2)/(x — 1)? being studied in [1].

An obvious difference between our Chebyshev covers and trinomial covers is that
the degree of the latter is only n. Related to this relatively low degree is the fact
that A,,, is rigid in the sense that it is determined by its ramification partitions
X = (m,k), &1 = (2,1,...,1), and A\x = (n). In other words, there are no
quasitrinomial covers besides the trinomial covers. In fact, A,,, is linearly rigid
in the strong sense of Katz [3], and this forces bad reduction at exactly primes
dividing mnk. In contrast, Chebyshev covers fail badly to be linearly rigid, and
there is at present no conceptual reason for their good reduction.

Let S be a finite set of primes and consider the problem raised in [5] of construct-
ing number fields ramified within S and with Galois group Ay or Sy with N as
large as possible. Specialization of covers is thus far the only systematic technique.
Previous to this paper, the family of trinomial covers was the most useful infinite
family of covers with respect to this constructional problem. Our T, , and Uy, ,
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here are very much better. A natural question is whether there are other families
of three point covers qualitatively similar to our Chebyshev covers.

2. CHEBYSHEV POLYNOMIALS

We work in the biquadratic extension of Z[z] obtained by adjoining v/ — 2 and
vVa+2. Let w e {1/2,1,3/2,2,...}. Our Chebyshev polynomials of the first and
second kind respectively are T, (z), Uy (z) € Z]x, vz — 2,V/x + 2] where

Tw(z+1/z) =2" 4+ 27", Up(z+1/2)=2" —2z7%.

These Chebyshev polynomials factor canonically into their interior and boundary
parts

(2.1) Ty(x) = ty,(2)tw (), Uw(2) = ug, ()t ().

Here the boundary parts ¢ (z) and u’ (z) depend only on their index w modulo
one and are

to(x) =1, uj(z) = Va2 -4
tip(x) =V +2, uyp(x) = vV —2.

The interior parts are monic polynomials in Z[z] and have all roots in (—2,2).
Explicitly, if w is integral,

to(z) = szm EU_”; (“’ N j) 7wy (2) :L(wzlj)/2(J—1)j (“’ —- j) gW 12

i=0 J i=0 J
If w is half-integral,
tw(z) = Uw+1/2($) - uw—1/2(x)a Uy (T) = Uw+1/2(9€) + Um—1/2($)~

One should view the T, (z) and U, (x) as indexed by degree. Here boundary roots
in {—2,2} count with multiplicity one half while interior roots in (—2,2) count
with multiplicity one, in accordance with the presence of square roots. One has a
variety of formulas connecting the Chebyshev polynomials, many direct translations
of formulas more widely known in the context of cyclotomy and/or trigonometry.
The connection between our Chebyshev polynomials and the most traditional ones
is

tw(z) = 2T, (z/2), U () = Uy 1(2/2)

in the case of integral w. Note in particular the index shift in the case of Cheby-
shev polynomials of the second kind. Our notation places the focus on U, (z) =
uk () uy(z) which does indeed have degree w. It also emphasizes primes of bad
reduction as disc(u,(z)) = 2%~ tw? 3.

3. CHEBYSHEV COVERS

The Chebyshev polynomials having been defined, the definition of Chebyshev
covers given in (1.1) is now complete. Basic facts about them can be established by
direct computation. When possible, we treat the two cases simultaneously, writing
F for either T or U throughout this paper.
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First, we justify the conventions set up in the introduction by explaining how
the excluded cases reduce to the considered cases. Suppose briefly that m = m/d
and n = n/d for d > 1. Then

(3.1) Fon(z) = Fpr e (Ta()) .

Similarly,

(3.2) Upin(t?,2) = =T (t, =) Ty (—t, — ).
whenever m and n are both odd. Finally, and immediately from (1.1),
(3.3) Fop (@) = Fom(2) 7

The standing assumption m < n breaking the m <> n symmetry is particularly
convenient as some phenomena become associated to only m and others to only
n. For example, in Section 6, vertices of valence related to n behave simply while
those related to m behave in a complicated way. In Section 9, in reverse, primes
dividing m behave more simply than primes dividing n.

The details of all our considerations depend on the parity of m and n. Often
we must therefore break into five cases, naturally denoted 701, 710, T'11, UO01,
and U10, the case U11 having been excluded. As an example of a case distinction,
numerator and denominator in (1.1) are relatively prime in cases 701 and 710, but
there is a cancellation in the remaining three cases.

The zeros of T, ,, and Uy, ,, from left to right have multiplicity

(m,n) =(0,1): )\ﬁ”on = nm/Q, )\g{f)n =n, (21@)7”/2—17 k,
n m— m—
GO0 ML= Rt =
ko e
(1,1) . AZ;ZS’L = §’n( 1)/27
The poles of T}, ,, and Uy, ,, from left to right have multiplicity
(m,n) =(0,1): /\Z{)O;’ - %7,m,(7L—1)/27 )\7[7]’;70; _ (27”‘)(n—1)/27
(3.5) (1,0) : /\Zﬁf —m?, )\717]105 — m, (2m)"/2L.
(1,1): Amow =mt D2,

These zeros and poles are all in [—2,2] and so divide into interior singularities in
(—2,2) and boundary singularities in {—2,2}. Always interior zeros have multiplic-
ity n in Case T and 2n in Case U. Always interior poles have multiplicity m in
Case T and 2m in Case U. The case distinctions are important only for boundary
singularities, of which there are always one in Case T and two in Case U. Our
appropriation of the classical terminology of Chebyshev polynomials has an extra
virtue not present in the classical theory: generally speaking, our functions T, ,
and U, , are similar; the main difference is that our functions of the second kind
involve an extra factor of two in many ways.

While the left-to-right order in (3.4) and (3.5) is certainly of fundamental impor-

tance, often only AZ>7 as a partition of the degree enters into a given consideration.
F,0

m,n

N

As partitions, A and )\ﬂf belong to a triple, the third member being the par-

n
ml---1 except when k is a multiple of six, in which case it is m21---1 as dis-

cussed below. Here m is the multiplicity of co in the preimage of 1. It reflects

tition /\fg} giving the multiplicities of the preimages of 1. This third partition is
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that F,, (1, z) always has degree m less than F,, ,,(s, x), a fact which can be easily
checked. In comparison to the other parts of our three partitions, the many 1’s in
)\f;;ln enter differently into our considerations. First, the corresponding roots are
not critical points, exactly because their multiplicity is 1 rather than some larger
number. Second, most of these roots are not real.

Throughout this paper we systematically illustrate general results with the par-

ticular cover
(x4 — 4% + 2)9
(z—1)8(z+2)* (23 — 32— 1)

Tgo(x) =

Also we concentrate on the case T01 this cover represents. Figure 3.1 plots T o(z).
The zeros on this plot interlace with the poles. This interlacing always occurs when

FIGURE 3.1. A plot of the rational function T ¢(z). Its four zeros
of multiplicity nine and its five poles of high even multiplicity are
clearly visible, as is the rapidly approached horizontal asymptote
at s =1.

k =1,2. It is usually not the case in general, as there are approximately k/2 more
poles than zero. Rather the geometric situation is substantially more complicated
because of the presence of approximately k/2 critical points, which we discuss next.

In Case T01, the m/2 zeros of multiplicity n each yield a contribution of n—1 to
the critical divisor, for a total contribution of (mn —m)/2. The (n — 1)/2 poles of
multiplicity m and the further pole at = —2 of multiplicity m/2 similarly yield a
total contribution of (mn—mn—1)/2 to the critical divisor. The point co contributes
m — 1. The critical divisor of a rational function of degree N always has degree
2N — 2, which here is mn — 2. This shows that there are (n —m—1)/2 = (k—1)/2
remaining critical points to be found. Similar simple computations for the other
cases reveal that in general there are |(k — 1)/2] remaining critical points to be
found.
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A first take on this situation is that the cases k = 1, 2 are worth pursuing while
the cases k > 2 are not. Indeed we will focus on the cases £k = 1, 2. However,
arbitrary k is in fact a natural context. One argument for this is simply that our
highest degree examples in Section 12 come from the setting k¥ = 3. However a much
more structural reason is given in Section 9: in the study of the bad reduction of a
given F}, ,, other covers F,,s ,, and F},, ,, enter with very different index differences.

By taking the derivative of F,, we find that these remaining critical points
depend only on k, being always the roots of u,/o(2). We find that the corresponding
critical values depend on whether one is in Case T or Case U, but again depend on
m and n only through the difference kK = n —m. Takingm =1 andn=%k+1 to
get the simplest formula, these critical values are the roots of the polynomials

dj (s) = *Res, ((iﬂ + 2121 — sty o (2), Uk/2($)) )
di(s) = =ZRes, ((z—2)" —s(z+ 2)5u(k+1)/2(x)2, ug/2()) .
Here § either zero or one according to whether k is even or odd, and the sign is

chosen so that df (s) is always monic. The first few of these polynomials in factored
form are

di (s) =1, dy (s) =1,

dj (s) =1, dg (s) =1,

di(s) =s+1, dY(s) = s+ 21,

di (s) = s +4, d{ (s) = s — 16,

di(s) = s* +11s — 1, d¥ (s) = 8% + 6255 + 3125,
dt(s) = (s — 1)(s — 27), d§ (s) = (s — 1)(s — 729).

One has several recurring patterns among these polynomials, including in both
cases that 1 is a root if and only if k£ is a multiple of 6. Thus usually one has
|[(k — 1)/2] critical values beyond {0,1,00} but if k is a multiple of six, one has
[(k—1)/2] — 1 =k/2 — 2 extra critical values and the ramification partition for 1
takes the shape m21Y~"~2 rather than m1¥ ™ as mentioned above.

4. DISCRIMINANT FORMULAS

Our formulas for the discriminant of Chebyshev covers play a central role in our
study so we state them here in all cases. The degree N};m of F,, » enters repeatedly
into our formulas. We write the degree as

Cases T01, T10: A =mn/2, Cases U01, U10: C =m(n—1).
Case T'11 : B=m(n-1)/2,

to simplify the notation. Also we express some quantities in terms of the triangular
numbers A(z) = z(z + 1) /2.
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Theorem 4.1. For s # 1, discriminants are as follows:
TO]. : dZSC(Tm n(s’x)) — (_1)A(m/2)+A((n+1)/2)2A7m/27nmAnA

(s = 1" tsAm 2 (o),

T10 : disc(Tnn(s,z)) = (—1)(m*1)"/42‘4*m*"/2m‘4n‘4
(S _ 1)m_18A_m/2_1/2d£(8),

T11 : disc(Ty n(s,)) = (—1)(m_1)("_1)/4mBnB+(k_2)m_k
(s~ 1)1 P02 (),

Uo1: disc(Up (s, x)) = 26 mCnC+Zh=2m—k
(S _ 1)m—1SC—m/2dg(8)7

U10 : disc(Up n(s,)) = (—1)(m+"+1)/QQC_kmcnc+(2k_2)m_k
(S o 1)mflsCfm/271/2de(s).

The main new content here is the exponents on the arithmetic bases —1, 2, m, and
n. The exponents on the main geometric factors s and s — 1 and also the presence
of the secondary geometric factor dkF (s) were known from the previous section. We
prove our discriminant formulas by methods similar to those used in [5], using again
Equations (7.13)-(7.14) there as a starting point.

For s = 1, we indicate degree by a = A —m, b= B —m, and ¢ = C' — m. In the
the same order of cases as before, we have the following complementary statements.

disc(Trnn(l,z)) = (-1 )A(m/z—1)-5-A(n/2—3/2)Qa—n/2—k/2mana—1d£(1)7
disc(Tmn(1, 2)) (- 1)(7” (n+2)/49a—n/2,, ape=147 (1),

disc(To (1, x)) (— 1)(m 1)(n+1)/2 bnb+(k—2)m/2—k/2—1d£(1)7
disc(Upnp(1,2)) (— 1)m/22c 1,e c—1—1c+(2/c—2)mdU(1)7

disc(Up n(l,2)) = (—1)"/2“26 1=k e c—1—k+(2k— deg(l).

Similarly we have formulas for the discriminant of the separable part of F,,, (o, x)
when o is a root of df, | (s).

5. DESSINS AND MONODROMY

We sometimes use —oo as a synonym for the point oo in the base projective line
P!(C) when it seems more communicative. The geometric dessin D], of a cover
Foun is FL ([—00,0]) considered as a subset of P} (C). Until the last paragraph
we assume k < 2.

Figure 5.1 draws the geometric dessin D8T79. The rightmost point of this dessin
on the real line is the pole 2 cos(7/9) = 1.88. The next rightmost point on the real
line is the zero 2 cos(m/8) ~ 1.85. These two parts are connected with eight edges.

Let Fgg be ngg considered as combinatorial dessin. So ngg is a specific subset
of C, while Fgg a planar graph which is allowed to be slid around freely. In
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FIGURE 5.1.  The dessin Tsfgl([—oo, 0]) drawn in the region
[—2.1,2.1] x [-0.45, 0.45] of the complex z-plane. The five poles of
are interspersed with four zeros connected by edges in accordance
with the diagram (5.1). The roots of Ts 9(—1, ) mark the centers
of the thirty-six edges while the roots of Ty ¢(1, x) mark the centers
of the twenty-eight bounded faces.

practice, geometric dessins are computer drawings, while combinatoric dessins are
more truly children’s drawings. The distinction is fundamental, as indeed one often
views combinatorial dessins as the input to the theory and geometric dessins as the
output. Nonetheless, we normally say simply dessin, as the context is clear.

Besides geometric dessins D and combinatorial dessins I', a closely related third
object v comes into play. We call this third object the reduced combinatorial dessin,
or again just dessin. It is constructed from I' by iteratively identifying two edges
which together bound a face, losing also the bounded face in the process. The lost
face corresponds to a non-critical point in the fiber F~1(1). Collapsing edges two
at a time in this way, many edges can be collapsed to one, and v is to be viewed
as a bipartite weighted planar graph. The weight of a vertex of « is the valence of
that vertex in I'. The weight on an edge of =y is the number of edges in I" reducing
to it. So edge weights determine vertex weights. However one often keeps the focus
on vertex weights since they are the more basic quantities.

In our example, the reduced combinatoric dessin fyST’ g is

T 4 5 3 6 2 7 1 8
(5.1) We=4-9-8"9-8-9-8-9-8.

Here and in the sequel, numbers in bold are multiplicities of poles, while numbers
in regular type are multiplicities of zeros.

Since the partition Af:,ln controlling faces is m1 - - -1, it is clear from the definition
that the graph 'yf,;,n is a tree in general. We can prove that, as one might expect from
the example (5.1), that 'yf;,n is in fact always a segment. The proof is elementary,
using the fact that all vertices are real.

As always for dessins, the monodromy group is generated by operators gg and g
acting on the edges of I' by rotating a given edge minimally counterclockwise about
the endpoint which is a zero or pole respectively. The highly structured nature of
our dessins lets us label edges of I' in simple ways so that the monodromy action
can be written down in algebraic terms.
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The dessin D,F,m brings to visual prominence two polynomials of particular in-
terest. First, it is reasonable to call the N roots of F, ,,(—1, ) the centers of the
N edges. Similarly, it is reasonable to view the N — m roots of F,, »(1,z) as the
centers of the bounded faces. In particular, we have a well-defined way to label
roots, even though the analytic fact that they lie approximately in columns is not
confirmed. We use this labeling in Section 10.

One can think of dessins more dynamically, viewing s as representing time and
the dessin as traced out by N moving points, distinguishable in the interval (—o0, 0).
In our cases, the particles start out at time s = —oo clumped at the approximately
n/2 poles. They expand in circles of generic size m or 2m about the fixed poles
until approximately s = —1 where circles about boundary poles have moved inward
to approximately vertical lines while circles about interior poles have split into
two approximately vertical columns. Then interior columns pair with their other
adjacent column, and the process reverses as the points contract in circles of generic
size n or 2n to the approximately m/2 zeros at s = 0.

For general k, the dynamic description just given goes through in large part.
The difference is that a pair of real roots can coalesce to become a pair of conjugate
non-real roots and one has to make choices to label roots consistently over all of
(—00,0). The extra coalescence is necessary for a consistent picture to account for
the approximately n/2 initial circles becoming approximately only m/2 circles.

6. QUASICHEBYSHEV COVERS

In this section, we restrict to the cases k = 1,2 and thus three point covers. We
define a three point cover to be a quasiChebyshev cover if its ramification partitions
over 0, 1, and oo agree with a Chebyshev cover and if it’s normalized in the same
way as a Chebyshev cover, as we’ll explain. The set F,, , of quasiChebyshev covers
agreeing numerically with a given cover Fj, , is finite and can be computed by
solving equations.

In Case T01, we begin our normalization by requiring that a quasiChebyshev
cover send oo to 1 and —2 to oo just as Ty, 5, = Tipy m+1 itself does. Then we have
the general form

(l.m/2 + 22/12 aixm/%i) '
Ten(x) = m
(z + 2)m/2 (xm/Z n Zi:/12 Cixm/Q—'L)

We look at the “new factor” AT | (x) of the numerator of the derivative of T&™ ().
The rational functions we seek are those for which A,Tnn(x) is reduced to a constant.

An affine transformation fixes —2 if and only if it has the form x — Az +(2\—2).
If we have a solution then changing x by this affine transformation gives another
solution. There are two cases to distinguish. The highest term of AT . (x) is
((m+1)a; —m(c1 +1))z™. Either a; and ¢; are both m, or they are both different
from m. In the former case, the three point covers we construct have non-trivial
automorphisms while in the latter case they do not. We focus on the latter case
first, which is the main case. In this main case, we complete our normalization by
requiring a; = 0 or equivalently ¢; = —1.
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In our continuing example, we have
Afg(z) = (—24—18az+ 16¢p)a®

(—18ay — 27ag + 40cy + 24c3)a® +
(12ag — 27az — 36a4 — 2azcy + 56¢3 + 32¢4)* +
(30az — 36ay + 4agcy — 1lazcy + 6ages + 72¢4)x> +
(48a4 — 14ascy — 20a4cy + 20azcs — 3azcs + 1dasey)x® +
(—32a4c2 + 2ascs — 12a4c3 + 36ascy + Hageq)x +
(—16a4cs + 18ascy — 4aycy).

5

Equating the coefficients of 2%, z°, 2%, and 3 successively to zero gives

s (12 + 9a2)/8,

c3 (—20 — 9ag + 9a3)/8,

cy = (560 + 216ay + 9a3 — 144az + 144a4)/128,
ay = (=112 —40ay — a3 + 24a3 + 2aza3)/16.

Writing a = a2 and b = a3 we then have

256
?AsT,g(l") =

8 (5a® — 3ba® + 60a® — 48ba + 48a — 12b + 48b — 448) 2° +

(6.1) 4(10a® + 22ba® + 120a® — 7b%a + 72ba + 544a — 108b* + 320b + 896) = +
(ba® — 40a® — 2b%a® + 156ba® — 1696a° — 24b°a + 2128ba — 8320a—
576b% + 4544b — 10752) .

The variable b occurs quadratically, so we can not eliminate it by such elementary
algebra. Instead, we take the resultant of the coefficients ho(a, b) and hy(a,b) of 22
and x respectively in (6.1) to get a constant times

gsola) = (a+4)(35a" +2380a° + 38192a° + 236480a" + 928000a’+
(6.2) 30156800 — 3993600a — 16564224) .

The septic polynomial on the right has Galois group S7 and field discriminant
—2435557211519°. Bach root a of g ¢(a) determines a quasiChebyshev cover T ()
with o = —4 yielding the Chebyshev cover Tg g(x).

In general, the part of 7y, 1 consisting of covers without extra automorphisms
is likewise indexed by the roots of a suitable moduli polynomial g},"hm 41(a). The
rest of Tr m+1, as we'll see topologically, is indexed by divisors d of m besides
1 and roots a of another moduli polynomial gTTn’,[ff] so that Tr[ffff] has exactly d
automorphisms. The cases T'10, T'11, U01, and U11 are easier in that there are no
quasiChebyshev polynomials with extra automorphisms.

We have computed all cases up through |F,, | = 42 as listed on Table 7.1.
In this range, the polynomial gf;:m(a) always factors over Q into a linear fac-
tor corresponding to the Chebyshev cover F,, and a complementary irreducible
factor corresponding to the other quasiChebyshev covers without extra automor-
phisms, just like in (6.2). Always the Galois group of the complementary factor
is the full symmetric group on its degree. Always, except for very low degrees,
the moduli polynomial is ramified at primes beyond those dividing m and n. For
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example, the field discriminant of the degree thirty four polynomial for Ugg" is
27134452772711231319191523102911318374473. The three point covers themselves can
be further ramified beyond the ramification in the moduli polynomial. For example,
T8[,2€;]’ with equation given in Figure 7.1, is defined over Q but has bad reduction at
5 and 7 as well as at 2 and 3. In short, in the collection of quasiChebyshev covers
only the Chebyshev covers seem to be arithmetically special.

One could go further in relating our covers to other covers as follows. One can
demand that A?nm be simply linear, rather than constant, thereby generically seek-
(m —1)1---1,A%% ) above (0,1, 00)
and a fourth unspecified ordinary ramification point. The solution set F,, ,, is a
curve containing F, ,. Thus this approach embeds the finite set F, , in a sin-
gle connected family. In our example case, 7;179 is the elliptic curve of conductor
1210 = 2- 5 112 defined by ha(a,b) = 0.

We have not yet used the constant term ho(a,b) of Afq(x). However, using
the same notation to indicate the general case, the root zeit = —ho(a,b)/h1(a,b)

of the linear polynomial Al (x) can be viewed as a function on the curve F .

ing covers with ramification partitions (A%

m,n’

Its critical value scrit = 3 (Teris) can likewise be viewed as a function on ]-'g%n.
In fact, the function s presents f,lnm as a three point cover of the line with
coordinate sqit. Our set Fp, 5, is in the fiber above oo. The rest of the fiber above
oo and the entire fibers above 0 and 1 include other sets analogous to F,, ,,, indexing
three point covers of different partition triples. Already our example case T3 g is
complicated, but lower degree cases which satisfy ]-'}nm =~ P! are computationally
easy. Even in this enlarged context, the Chebyshev covers seem to be the only three

point covers which are arithmetically special.

7. QUASICHEBYSHEV DESSINS

In this section, we again restrict to the cases k = 1,2. We explain how “half” of
the topological simplicity of Chebyshev covers is kept by quasiChebyshev covers.
This allows us to index the sets F,, , of quasiChebyshev covers in a particularly
simple way.

A quasiChebyshev cover has a dessin, again simply the preimage D of [—o0, 0].
It has a combinatoric dessin I' and a reduced combinatoric dessin =, respectively
a planar bipartite graph and a planar bipartite weighted tree. At issue is to say
explicitly what the possibilities for  are.

The vertex weights on v are given, being by definition exactly the same as in the
Chebyshev case. The sum of the weights of edges incident on a vertex is exactly
the given vertex weight. Vertex weights then completely determine edge weights,
but many candidates for «y yield zero or negative edge weights. For example, the
weighted bipartite tree

8 1 3 6 2 8
8-9-4-9-8—- 9 —8
-1
v = 8
|9
9

is not a reduced combinatorial dessin because of the negative edge weight —1.
Clearly for the partitions Ao, = 48% and Ay = 9* in this example, a weight nine
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vertex can never have valence one. It then follows that it can never have valence
> 3 either, and thus must have valence two.

In general, we say a zero-vertex is large if it has weight n in Case T or 2n in
Case U. Similarly, a polar-vertex is large if has weight m in Case T or 2m in Case
U. Otherwise vertices are medium or small, meaning half the generic weight or
weight 1 respectively. There is one small or medium vertex in Case T and two
small or medium vertices in Case U, as mentioned in Section 3. The numerics force
in a very simple way, illustrated for Tg'y" above, that the large zero-vertices have
valence two in all cases T01, T10, T'11, UO1, and U10 and the medium or small
zero-vertices have valence one. More surprisingly, in all cases, there is no condition
on the polar vertices, whether they be large, medium, or small. For example, the
weighted bipartite trees

8 1 7 2 1 8 8 1 7 2 1 8
8-9-8-9-8-9-8 8-9-8-9-4-9-8
5 1
9 9
|4 |8
4 8

are each reduced combinatorial dessins. They each have polar vertices of valence
1, 2, and 3.

Because edge weights are automatic from vertex weights, we don’t need to write
them. Because all zero-vertices have valence one or two, we only need to draw in
the former. We distinguish between small and medium zero-vertices by drawing
nothing and x respectively. This last distinction is important only in Case U01,
since only in this case is there both a small and medium zero-vertex. By this
procedure, any reduced combinatorial dessin -y gives rise to a combinatorial object
6 which we call a polar combinatorial dessin. The reduction vy — 9 is bijective, and
we focus on the ¢§’s.

22— 247 4 84)°
To(x) = 2( )

J—8_8_4-8_8 22 (22 — 272+ 135)°

with z = 2(z + 2)?

with z = 9(x + 2)*

FIGURE 7.1. The two polar dessins ¢ indexing quasiChebyshev
dessins in Tg ¢ with rotational symmetry, and for each a formula

5
for T¢ g.
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We now systematically use the letter e to index objects. We use polar dessins d
to distinguish quasiChebyshev covers from each other. Thus, in Case 701, the ele-
ments of Ta¢ 2041 are TQ‘se,Q‘8 41 wWhere 0 runs over planar trees with a marked vertex.
In our continuing example Tgy", the possibilities for ¢ are given in Figures 7.2 and
7.1.

8
|
4-8-8-8-8 —4.000 4-8-8 2124
|
8
8
|
8-4-8-8-8 —10.954 8-4-8  —8.045
|
8
8 8
| |
4-8-8 1.997 4-8-8  —47.962
| |
8 8
8-8 8
| |
4-8 0.456 — 5.119 4-8 0.456 + 5.119
| |
8 88

FIGURE 7.2. The polar dessins § indexing quasiChebyshev
dessins in Ty, , without rotational symmetry and for each the cor-
responding root of (6.2).

Our terminology “polar dessin” is self-explanatory in Case T01 as J refers to
poles only, not zeros. In the remaining cases, the term reflects the fact that ¢ refers
to all the poles, and only the small and medium zeros, of which there is at most
one of each type. Figure 7.3 illustrates our drawing conventions for polar dessins
in each case.

Recall that the e Catalan number is

1 (2 (2e)!
(7.1) Ce—e+1(e)—(e+1>zez-

For e = 1, ..., 5, the corresponding Catalan numbers are 1, 2, 5, 14, 42 and
asymptotically one has C, ~ 4°/(y/me*/?). The usual statement is that Catalan
numbers count rooted planar trees, meaning a planar tree together with a marked
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Yo, =3-7T-6-T7T—-6-7-6-7 5 =3-6-6—6
W= 3-5-6-5-6-5 Tg= *»5-5-5
Wi=  1-5-T-5-T7T-5 T, = -5-5-5
= 7-12-14-12-14-12 -1 0, = x12-12-12-

e = 5-12-10-12—-10—1 Vs = 5 _-10—10-

FIGURE 7.3. On the left, the reduced combinatoric dessin of
Chebyshev covers representing each of the five cases. On the right,
the corresponding polar dessins. The procedure for passing from
a reduced combinatoric dessin  to the corresponding polar dessin
0 does not use the linear structure present in these diagrams, and
works in the quasiChebyshev context.

Case  Description Mass  Masses for e =1,2,3,...

C. _ -
T2e,2¢+1 Vertex marked as medium 2—(6 +1) .6,1.5,3.3,8.75,25.2, ...
e

Tae+1,2¢+2 Medium half-edge C. 1,2,5,14,42,. ..
T2e+1,2¢+3 Small half-edge C. 1,2,5,14,42, ...

Medium half-edge
Uzet2.2¢+3 Small half-edge 06(26 + 1) 3,10,35,...,

U Vertex marked as medium
Zet12e+2 gmall half-edge

TABLE 7.1. Description and masses of the sets F,,,. In each
case the description is in terms of what needs to be added to a
planar tree with e edges to get a polar dessin §. The polar dessins
0 can have non-trivial rotational symmetry only in the first case
T01. Otherwise, masses agree with cardinalities.

C.(e+1) 2,6,20,...

vertex and a marked edge incident upon it. Another point of view is that the
rational numbers C./(2e) give the mass of planar trees with e edges, the mass of
a planar tree 7 being as usual 1/[Aut(7)| with Aut(7) its group of symmetries.
Our polar dessins with e edges are constructed from planar trees with e edges by
distinguishing vertices and/or adding half-edges. Marking a vertex corresponds to
multiplying by the number of vertices e + 1. Adding a half edge corresponds to
multiplying by 2e. Adjoining a second half edge corresponds to multiplying by
2e + 1. The total mass of the sets F,, , is thus as given in Table 7.1.
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8. GENERIC MONODROMY

Recall our standing conventions that m and n are relatively prime and not both
odd in the Case U. Recall also that quasiChebyshev covers can have non-trivial
automorphisms only in Case T'01. The main result of this section is as follows.

Theorem 8.1. A quasiChebyshev cover without non-trivial automorphisms has
monodromy group the full alternating or symmetric group on its degree.

Our proof of this monodromy result proceeds in stages as follows. Irreducibility
is obvious from the fact that PL is connected. Primitivity follows from the fact
that the ramification partitions associated to F,, ,, : P1(C) — PL(C) do not allow
for an intermediate curve, unless F;, , has automorphisms. Finally irreducibility is
deduced from the fact that the monodromy group contains g; which has cycle struc-
ture m1V~™. The fact that the proof goes through in the quasi setting indicates
the naturality of this setting.

9. FIELD DISCRIMINANTS OF SPECIALIZATIONS

One would ideally like to have explicit descriptions of p-adic ramification in the
polynomials F, (s, ) for all F, ,,, all primes p, and all s € Q. Experimentation
shows very regular behavior in all cases.

Let F, be an algebraic closure of F,. Let Q3™ be the induced maximal unramified
extension of Q,. It is best to work geometrically, meaning factoring over Q;"
rather than Q,. The dominant phenomenon is that F), ,(s,z) factors p-adically
into factors which look very similar to each other with a few exceptions.

A clean example is provided by Tg 9(—1,x) with p = 3. Its polynomial discrim-
inant at 3 is 3¢ with C' = 72. Tt factors over F3 as 2%(z + 1)?(2? + 1)? and thus
over F3 as 2°(z +1)?(x +14)°(x — i)°. Write the field discriminant at 3 as 3°. Then
both C and ¢ must be distributed somehow over the four roots, via C' = > C, and
¢ = Y ¢. Necessarily C,. — ¢, is non-negative and even. The simplest behavior
that one could hope for is even distribution and no drop, so that the C,. and ¢, are
all 72/4 = 18. This is indeed what happens.

A more representative example is provided by Ts o(—1, ) with p = 2. It factors
over Fy as z(2® + 22 + 1)8, giving roots 0, rq, ro, 73 over Fy. Also, because of
the degree drop, oo must be considered a root of multiplicity eight. Discriminant
exponents (Cy,c,) are (35,11) for the quartic root z = 0, (24,24) for the octic
factors corresponding to the r;, and (31,31) for x = co. Here one should regard
the r; as behaving typically and 0 and co as both behaving specially.

The starting point for analysis in general is a factorization modulo p, as follows.
If p7 exactly divides n, define

B min(n/2, m2771) ifp=2,
e(T,m,n,p) = { min(k/2,m(p’ —1)/2) ifp>2,

e(U,m,n,p) = mln(k7m(pJ - 1))
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Then for p’ exactly dividing m or n as indicated and for s reduced to F, U {cc},
one has congruences

Trn(5,2) = Tjprn(s,2)” (@ +2)"2,
Ton(5,2) = Ty (s,0)7 (4 2)"Tmmn),
Unin(s,2) = Unyprnls,0)?

Up(2) = Uy (5,27 (2 = 250

modulo p.

When s reduces into F ) rather than into {0, 00}, the factorizations just displayed
are particularly powerful. For then the bases on the right are generically separable,
having at worst a double root when s is a root of the relevant dm - The factor
f(z) of Fy n(s,x) over Q" corresponding to a generic root is irreducible of degree

p7. It has polynomial discriminant pjpj and field discriminant also pjpj. Moreover
= Qu"[z]/f(x) has an increasing chain of subfields K; of degree p’ and field

discriminant p/?". Thus the slopes measuring wild ramification in the normalization

of 2] are i+ 1/(p—1) fori =1, ..., j. This is less than the maximally wild case
for extensions of Q" of degree p, as there slopes are i + 1 + 1/(p—1) for i =1,
.., j. The source of exceptional factors are the special points x = —2, 2, oo, and

the roots of the relevant Uy /5. Behavior of these factors needs to be described in
a case-by-case way and often involves tame ramification.

When s reduces into {0, 00}, the p-adic factorization may involve larger degree
factors. For example, T5 9(2,x) has an irreducible degree 32 factor over Q5". Also
slopes of generic factors can reach the maximum of j+ 14 1/(p—1). For example,
Ts9(3,z) factors over Q4" into four nonics, each having the maximum possible
discriminant 326,

10. IMPRIMITIVE SPECIALIZATIONS

Consider a Chebyshev cover, thought of as a family of polynomials F,, ,(s,z)
with generic Galois group Gy either Ay or Sy. We know that for generic o € Q, the
Galois group of Fy, »(0, ) is all of Gn. However we are interested in constructing
number fields by specializing at the “most special” points o. So there is some
concern that Galois groups will drop dramatically at these points.

In this section, we experimentally find that there is indeed such a drop in two
instances. First, for k = n —m odd, Uy, (1, ) has degree m(n — 2). Within range
of computation it always is irreducible, but it has subfield of index two. Moreover,
this subfield is defined by T}, (1, 2) which has generic Galois group. Second, for
k arbitrary now, Tp,.,((—1)*,x) has either 0, 1, or 2 factors of (z + 1) and the
remaining part T;L)n((—l)k,x) has degree a multiple of three. Within range of
computation it is always irreducible, but has a subfield of index three.

For k = 1,2 we strengthen the obvious conjecture that this pattern continues
by being explicit as to how roots are to be grouped. The second case concerns
T m+1(—1, ) for general m and T, m42(1, 2) for m odd. The parity distinction
drops out, and counting —1 only once even if it has multiplicity two, there are
always exactly m(m — 1)/2 roots. The roots, as suggested by Figure 5.1 in the case
Tg,9 form columns of heights 1 through m — 1 in the case £ = 1 and 0 through
m — 1 in the case k = 2. For a, b, ¢ positive integers summing to m + 1, let agpe be
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the b*™" root from the bottom or top in the column with @ roots; here one counts
alternately from the bottom or top as one considers the columns from left to right.
Define new complex numbers Bupe = Qape + Qeab + Qpea, €xcluding the central case
a = b= cif it is present. Then the conjecture is that the monic polynomial with
roots Bape is in fact in Q[z]. Our triangular indexing on the roots of Ty o(—1, z) is
indicated in Figure 10.1. The corresponding degree twelve polynomial

f(z) = 2'? = 362" — 482" + 3782° + 8642 — 9842 — 43202° — 32852 + 1922 + 864
indeed has Galois group Si3. Our strengthening of the 2-imprimitivity conjecture
likewise makes of triangular indices for the roots of Ty, ,(1,2z) and two sets of

triangular indices for the roots of Uy, (1, ). It is to be hoped that a proof of our
imprimitivity conjectures would add insight to the nature of Chebyshev covers.

361 181
451
613 271
712
352 172
514 442 262
163
523 343 253 154
532 433 622 244 811 145
334
235 136
541 424 226
325 127
721
631 217
415
316 118

FIGURE 10.1. Triangular labels on the roots of Tg 9(—1, ). Each
label is placed at the corresponding root, except that imaginary
parts are independently scaled in each column for better visibility.
Root agpe has 9 — a roots in its column, and is either b** from
the top and ¢ from the bottom, or vice versa, depending on the
parity of the column.

Besides the mysterious imprimitivity phenomenon, there are two obvious sources
of Galois drop. First, if ¢ is of the form F,, ,,(zo) then certainly F), (o, z) has z
as a root and so G, C Gy_1. Second, if the discriminant D, ,,(s) is not a square in
Z[s] but Dy, (o) is a square in Z then certainly G, C Ay while the generic Galois
group is Sy. For very low (m,n), there are other systematic sources of Galois drops
because the curves governing the drop to a given group may have genus zero. For
example, consider the quartic cover family Us 3(s,z) = (x — 2)(z + 2)3 — s(z + 1)*
with Galois group Sy. It has T5 3(s,y) as its resolvent cubic. So for ¢ of the form
Tos(y) = v*/((y — 1)%(y + 2)), the quartic Uz 3(o, ) has Galois group within the
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dihedral group Dy4. In all but very small degrees, there seem to be no further Galois
drops. This lack of Galois drops is what we want for the purposes of the next two
sections.

11. MODERATE DEGREE EXCEPTIONAL FIELDS WITH DISCRIMINANT +2%3% OR
+305b

Consider degree N number fields with Galois group Ay or Sy and discriminant
divisible only by primes in a given finite non-empty set S. In [7], the expected
number of such fields was discussed and in particular such a field was defined to be
exceptional when N is larger than a certain number N(S). There is currently no
general way to construct exceptional fields for any given S, and it was conjectured
in [7] that for each S there are only finitely many exceptional fields.

Specializing Chebyshev covers gives exceptional fields for many S. Moreover, the
fields go substantially beyond the already very stringent demand N > N(S) in two
ways. First, very simply, N can be very much greater than N(S). But second, as
described in Section 9, the fields constructed here are ramified much more lightly
than is allowed by their degree.

Jordan’s criterion. Jordan’s criterion says that a transitive subgroup of Sy con-
taining an element or prime order ¢ € (N/2, N — 3] must be Ay or Sn. To confirm
the genericity of a generic polynomial f(x) € Z[x] using this criterion, one verifies
that f(x) is irreducible over Z and finds a prime p such that f(z) € F,[z] has an
irreducible factor of degree ¢. Using say Mathematica 6 this is very easy in practice
for degrees < 1000 and we will not generally further comment on verifications of
genericity.

Fields with S = {2,3}. The case S = {2,3} has been specifically pursued in the
literature. The main previous paper is [5], where fields of degree up through 33 are
constructed. The main technique in [5] is specializing three and four point covers,
exactly as in this paper.

One has N({2,3}) = 62 and so the previous fields do not come close to being ex-
ceptional. Our family Tg 9 with generic degree 36 goes slightly beyond the previous
33 while our family Ugg¢ with generic degree 64 goes slightly into the exceptional
range.

Of course, it remains to confirm that specializations of Ts¢ and Ugg behave
generically. As in [5], besides s = 1 we use the twenty-one specialization points

1 1 11111238943

(11.1) { 8-3,-2-1, 27 37 879747372737479°873’ 2’2’3’4’9}
coming from the orbits of 2, 3, 4, and 9 under the action of S3 permuting the three
cusps s =0, 1, oco.

As we saw in Section 10, Tg o(—1) is imprimitive with Q[z]/Ts 9(—1, ) containing
a degree twelve S5 subfield. It is different from the 106 degree twelve fields found
in [5]. According to Section 10, Ugo(1l,z) is imprimitive with T5 (1, 2) defining
the corresponding subfield. This is indeed the case, with Ts o(1,z) having Galois
group Ssg. The absolute field discriminant is 283354 which is smaller than the
absolute field discriminants of the twenty-three degree 28 fields found in [5], the
lowest discriminant there being 2923%°.
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The polynomial T o(2,z) factors as (x — 2)fss(x) with f35(z) having Galois
group all of S35. The remaining nineteen points from (11.1) yield four Asg fields
and fifteen Ss¢ fields, all distinct. The polynomial Ug (s, z) at the twenty-one s
in (11.1) yields four Agy fields and seventeen Sgy fields. Thus in summary, Galois
groups behave completely generically, given the general expectations presented in
Section 10.

A field with S = {3,5}. There are fewer possibilities for wild ramification at p
in algebras of a given degree as p increases. For this reason N({p1,...,pr}) decays
as one p; increases and the others are fixed. This explains why the threshold for
exceptionalness N({3,5}) = 38 is markedly less than the threshold N({2,3}) = 62.
Generally speaking, it is indeed harder to construct 3-5-number fields than 2-3
number fields by the method of three point covers, because the analog of (11.1) for
any set of odd primes is empty.

Our source of an exceptional field with discriminant £3%5° is the cover T 25.27(8, %)
at the specialization point s = 1. The polynomial T55 27(1, z) has degree 300 and
Section 10 says the corresponding field has a degree 100 subfield. We have con-
firmed that indeed it does have a degree 100 subfield, the defining polynomial with
roots Bupe being

(11.2) T5¢%:(1,2) = 2% — 62529 + 193, 0502 — 39,288, 375297 + - - -

The coefficients of 27 increase monotonically in size until the coefficient of '® which
has 83 digits; then they decrease monotonically with the constant term having 77
digits. Direct computation shows that its discriminant has the form

(11.3) disc, (T35%7 (1, 2) = 3015°%0(23 - 137 - 25471 - 31482349 - C)°.

Here C ~ 4.2 x 10'°96 is a non-prime having no prime factor < 10'8. Here Jordan’s
criterion applies because T5%; (1, z) is irreducible but modulo 2 factors as 71414+
12 + 3; thus the Galois group is all of Ajgg.

12. LARGE DEGREE EXCEPTIONAL FIELDS WITH DISCRIMINANT 42950

In this final section, the focus is on five polynomials all with field discriminant
of the form £295°. Their degrees are N = 7825, 7998, 8000, 8000, and 15875.
The second one is expected by Section 10 to be 3-imprimitive and our calculations
support this expectation. The genericity principle points to the remaining four
having Galois group all of Sy, and we prove via Frobenius elements that this is
indeed the case.

Manning’s criterion for genericity. We continue with the set up of the previous
section, except now we need to apply our considerations to polynomials in the range
7825 to 15875. At present, Mathematica 6 does not factor polynomials f(z) € Z[x]
in this range. For very small primes p, it factors f(x) in F,[z] in approximately one-
half hour for N near 7825 and two hours for N near 15875. To confirm genericity
of polynomials with degrees of this order of magnitude, we need to use a stronger
result that Jordan’s simple criterion.

Results of Manning from around 1920 suffice for our purposes. One statement,
a weakened and simplified version of Theorem 13.10 of the text [8], goes as follows.
Let G be a primitive subgroup of Sny. Suppose G contains an element of cycle type
PI1* for p a prime. If P> 2q —1 and k > 4q — 1 then G is Ay or Sy.
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To use Manning’s criterion to confirm a Galois group is Ay or Sy, one typically
uses the available primes p; < pa < p3 < --- to compute as many partitions A, as
necessary. One uses these partitions in a three step process.

e First, one verifies transitivity, a necessary condition for primitivity. To do
this, one looks at the set S, of all partial sums of A, taking j large enough
so that S, N---N S, ={0,N}.

e Second, one verifies that for every divisor d # 1, N of N, the Galois group
G is not in the wreath product of Sy/q wr Sq. Cycles types appearing
for Sy/q wr Sq are exactly those whose parts are products d;/; j, with the
d; running over the parts of a partition of d, and the ¢; ; running over a
partition \; of N/d.

e Third, one finds a class in G which verifies Manning’s large prime condition.
Let A = X, be one of the available partitions. Let M be the least common
multiple of the parts of A\. For all primes P exactly dividing M, let \M/P
be the indicated power of \, so that a part ¢ of A contributes P/ to \M/P
if £/P is an integer, and 1¢ to AM/¥ otherwise. Then AM/P = Pa1F is a
candidate for satisfying the large prime condition.

In our five cases, the first four available primes are 3, 7, 11, 13. Always these four
primes suffice for the first step. Always, any one of them suffices for the second
step. Always, any one of them suffices for the third step.

Five large degree fields with S = {2,5}. The threshold for exceptionalness
in our final explicit case is N({2,5}) = 49. To construct exceptional fields, we
use the covers Ti95.128(s, ) and Uias 128(s, ). From our discriminant formulas, we
know the corresponding discriminants have the form £2*5*s*(s — 1)*d% (s) with
d¥(s) =s+1and dY(s) = s+ 27.

Special points which give algebras with discriminants of the form 42%5° are
s=1,—1,4/5, and 5/4 for T125128(s,z) and s = 5 for Ujas,125(s, ). The degrees
of these algebras are 7875, 7998, 8000, 8000, and 15875. The points s = 5/4, s = 4/5
introduce factors of 32 into the polynomial discriminant but these factors necessarily
drop out in the field discriminant because the 3-adic proximity ords(s + 1) = 2 is
a multiple of the ramification index e = 2.

As a convenient simpler parallel case, we can replace (125, 128) by (5, 8) and use
the same specialization points. Then from T5 s(s,x) at s =1, —1, 4/5, and 5/4 we
get fields of degree 15, 18, 20, 20. The second has a degree six subfield with Galois
group Sg and the remaining three have Galois groups S15, S20, S20, all as expected.
The field discriminants are respectively 236515, 243517 259536 and 259537 Similarly
for Us s(s,z) at s = 5 we get a field of degree 35, field discriminant —289557 and
Galois group all of Sss.

Table 12.1 gives the factorization partition of these five polynomials for the
primes 3, 7, 11, and 13. In all cases except for the second-printed case s = —1, this
information is enough to conclude genericity by Manning’s criterion. The upper
left corner of each subtable gives the discriminant class of the two corresponding
polynomials, calculated using Theorem 4.1 for s # +1 and other results of Section 4
for s = +1. In each case this discriminant class is different from 1, proving that
the Galois group is symmetric rather than alternating.

One has Ty, n(—1,2) = Tn(—1,2)*(z + 1)® for both (m,n) = (5,8) and
(125,128). In the second frame of Table 12.1, parts are grouped either in ones,
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5 T5s(1, ) T125,128(1, x) degree = 7875

3—| 9 6 4657 1976 475 469 153 68 43 22 9 3
77— 10 2 2 1 5635 2224 7 6 2 1
11+ 15 6453 2224 7 6 2 1
13— 12 3 5211 1580 658 259 128 25 12 2

10 T5’g(—17 x)* T125,128(_17 x)* degree = 7998 = 3 - 2666
3+(10 5) (2 1) 2131° 1095 (276 138) 90 3 (2 1)

7—| 18 3480 (1276 638) (800 400) 317° (282 141) (16 8) 23
11— 63 (5038 2519) (146 73) 743
13+((10 5) (2 1) 6744 486 (440 220) 75 (8 4) 6 3* 2°

5 T5,8 (4/57 33) T125’128(4/5, 33) degree = 8000

3—] 10 5 2 21 2131 2131 2131 1095 276 138 90 3 2 2 1
7+ 15 2 2 1 3772 2046 923 814 294 58 52 17 14 6 22
11-] 10 9 1 4758 2048 537 343 157 62 44 39 7 4 1
13— 10 7 1 11 5009 1550 1164 157 &7 19 12 1 1

10 T5,8(5/4,) T125,128(5/4, ) degree = 8000

3+ 10 5 2 11 1| 2131 2131 2131 1095 276 138 90 3 2 1 11
- 9 6 3 11 5978 1284 700 33 2 2 1
11—| 20 7020 856 85 36 3
13+| 15 5 4740 1715 639 527 204 171 2 2
—10 Us,s(5, %) Ui2s,128(5, ) degree = 15875

3—1] 27 8 10194 3365 2123 155 20 10 5 3

7+ 35 7332 2492 1642 1388 1077 1011 818 72 24 10 9
11+ 10 10 6 6 3 9784 3238 1272 648 480 143 139 133 17 12 9
134+ 1512 5 21 6808 4493 3803 626 74 39 13 8 6 3 2

TABLE 12.1. Factor partitions for five large-degree polynomials

from the case (m,n) = (125,128) at the small primes p = 3, 7, 11,
and 13. A parallel case with (m,n) = (5,8) is also treated to the
left.

twos, or threes, and expressed as 3a, (2a,a), or a®, showing consistency with the
expectation of 3-imprimitivity. Each of these forms yields a in the corresponding
partition of 6 or 2666, proving that Q[z]/T,, »(—1,z)* has a subfield of index three,
then its associated Galois group is indeed Sages by Manning’s criterion.

As a side point, for both (m,n) = (5, 8) and (125, 128), one has that the reduction
of T, n(s, ) to F3[z] is independent of s € {—1,5/4,4/5} and contains the singular
factor ( + 1)2. This accounts for the near-agreement of the three corresponding
3-adic factor partitions.

Returning to our largest example, our degree 15875 polynomial is

U1257128(57 I’) = (I — 2)3u62.5(17)256 — 5(I + 2)125u64(35)250.

Its existence depends not only on the general theory of Chebyshev covers but also
on the two ABC-triples 5% + 3 = 27 and 3% + 5 = 2°. Remarkably, despite the
presence of the prime 3 in both these triples, not even the polynomial discriminant
of U125’128(1,£L‘) is divisible by 3.
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