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1a. Gross’s observation from the mid-1990s

Let L ⊂ C be a Galois number field. Then two of its most basic
invariants are its Galois group G = Gal(L/Q) and the set of primes S
dividing its discriminant disc(L/Q).

(Random example: Let g(x) = x13 + x2 + 2, let K = Q[x ]/g(x) be
its stem field, and let L be its splitting field. Then

disc(g(x)) = 1, 240, 578, 719, 095, 233, 176 = 23 · 592 · 558913 · 79705099

disc(K/Q) = 356, 385, 727, 979, 096 = 23 · 558913 · 79705099

disc(L/Q) = (45, 307, 555, 206 digits) = 2∗ · 558913∗ · 79705099∗

The invariants for L are G = S13 and S = {2, 558913, 79705099}.)

Gross observed that there was not a single number field known for
which G was nonsolvable and S consisted of a single prime ≤ 7. He
conjectured that such fields do exist.
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1b. Root discriminants

It is often best to work with root discriminants of number fields,

δF = |disc(F/Q)|1/[F :Q].

For g(x) ∈ Q[x ] with stem field K and splitting field L one has
δK ≤ δL.

(Random example continued: For g(x) = x13 + x2 + 2 the root
discriminants are

δK = 23/135589131/13797050991/13 ≈ 13.16

δL = 23/25589131/2797050991/2 ≈ 18, 878, 181.27)
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2a. Some context and related work from ≤ 2007

A. It is easy to produce solvable fields ramified only at a single given
prime p. Example (Galois): the splitting field of xp − p has
G = Fp : F×p .

B. From classical modular forms one knows that for each prime
p ≥ 11 there exists at least one field L with G = PGL2(p) and
S = {p} (Deligne, Swinnerton-Dyer).

C. It is general hard to get defining equations for the fields in B. An
easy case is the unique field for p = 11, which comes from 11-torsion
points of an elliptic curve with j-invariant −64/297. Then f (x) =

x12 + 90p2x6 − 640p2x4 + 2280p2x3 − 512p2x2 + 2432px − p3

has Galois group PGL2(11) and f (x2) has Galois group SL±2 (11)
(Jones-R.). Harder cases of B worked out by Bosman.
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3a. Results of Dembélé and Serre from 2008

In 2008, Dembélé used computations with Hilbert modular forms to
prove the existence of the first field L known to satisfy Gross’s
conditions. It has G = SL2(2

8)2.8 and S = {2}. Dembélé also proved
that the root discriminant δL is less than 25.875 ≈ 58.68.

Serre then improved the exponent from 5.875 to

α = 1518251/262144 ≈ 5.79.

Thus δL ≤ 2α ≈ 55.40.
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3b. Results of Dembélé, Greenberg, and Voight

In 2009, Dembélé, Greenberg, and Voight also used Hilbert modular
forms to prove the existence of many fields satisfying Gross’s
conditions. For S = {3}, they have G = PGL2(3

k) with k = 18, 27,
and 36. For S = {5}, they have G involving one or more copies of
the simple group G = PSL2(5

k) for k = 1, 2, 5, 10, 15, 25, and 40.

The case k = 1 for S = {5} gives an L with G = PSL2(5)
5.2.5. Let

F = Q[π]/(π5 + 5π4 − 25π2 − 25π − 5)

be the totally real quintic subfield of Q(e2πi/25). Via PSL2(5) ∼= A5,
the field L is the splitting field of a quintic polynomial over F . An
overfield L̃ with group G̃ = SL2(5)

5.2.5 is the splitting field of a
degree twenty-four polynomial over F .



3b. Results of Dembélé, Greenberg, and Voight
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4a. A nonsolvable polynomial with field disc. 569

Theorem
Let g25(x) =

x25 − 25x22 + 25x21 + 110x20 − 625x19 + 1250x18 − 3625x17

+21750x16 − 57200x15 + 112500x14 − 240625x13

+448125x12 − 1126250x11 + 1744825x10 − 1006875x9

−705000x8 + 4269125x7 − 3551000x6 + 949625x5

−792500x4 + 1303750x3 − 899750x2 + 291625x − 36535.

Let L be the splitting field of g25(x). Then

G = Gal(L/Q) ∼= A5
5.2.5.

The discriminant of K = Q[x ]/g25(x) is 569 and thus S = {5}.
L coincides with the DGV field.
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4b. The factorization of g25(x) over F

Let

α = −5

7

(
3π4 + 10π3 − 19π2 − 62π + 5

)
β =

1

7
(−79π5 − 331π4 + 288π3 + 1803π2 + 566π).

Let
σ(π) = 7−1(−4π4 − 18π3 + 9π2 + 92π + 40)

be a generator of Gal(F/Q). Then

g25(x) =
4∏

i=0

f σi

5 (x)

where

f5(x) = x5 + αx2 − αx + β.
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5. How special is g25(x)?

How many fields should one expect with say G = A5 or S5 and given
S? Applying a local-global heuristic (Bhargava) and local
computations (R.):

Ground Field Q

S {5} {3, 5} {2, 5} {2, 3, 5}
Predicted: 2.9 56 120 2, 200

Actual: 0 28 43 1, 415

Number field searches (Jones-R.) give the actual numbers.

Analogous question and answer over our quintic ground field F :

Ground field F

S {5} {3, 5} {2, 5} {2, 3, 5}
Predicted: 3.7 5, 400 490, 000 720, 000, 000

Actual: ≥1 �33 �154 �905
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6a. How was g25(x) found?

For j ∈ F the polynomial

f (j , x) = x5 + 5x4 + 40x3 − 1728j

coming from 5-torsion points on an elliptic curve with j-invariant j
generically has the right Galois group. The discriminant is just

D(j) = 22431255j2(j − 1)2.

Since L lifts to an SL2(5)
5.2.5 field L̃ and the corresponding Galois

representation has cyclotomic determinant, L is guaranteed to arise
for some j ∈ F (Shepherd-Barron and Taylor).

Trying to get S = {5}. The easiest way to kill 2 and 3 is to take
j ∈ F with ord2(j) = ±6 and ord3(j − 1) = ±3. These are very
demanding conditions which force j to have large height and make it
highly likely that f (j , x) ramifies above some prime > 5.
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6b. How was g25(x) found?

A search over many j with low height found 647 non-conjugate
non-rational j-invariants yielding 647 fields with G = PSL2(5)

5.2.5
and S within {2, 3, 5}.

ord2(j)

−5 −4 −3 −2 −1 0 1 2 3 4 5 6

1 5 5 4

0 1 2 4 67 63 248 74 66 12 4 1

−1 1 16 35 12 1

−2 5 9 8 3

−3 1

In particular, j1 =

−26

5 · 76
(68155π4 + 288368π3 − 125935π2 − 1495535π − 1089160)

yields a field with S = {3, 5}. (Also have a field with S = {2, 5}).
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6c. How was g25(x) found?

Now use base-change operators

BC3(j) =
(4j − 1)3

27j
, BC4(j) =

(9j − 1)3(1− j)

64j

to get 508 new j ’s (mostly of much larger height).

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5

1 3 4 1

0 4 8 3 7 50 7 4 2 3 4

−1 3 4 1

−2

−3 1 3 5 55 31 146 30 45 2

−4 1 2 9 19 5

−5 5 22 10 6

−6

−7 1 6 2 3
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6d. How was g25(x) found?

The desired specialization point is j2 = BC3(j1). Explicitly, j2 =

−1

263351711

(
16863524372777476π4+

88540369937983588π3 − 11247914660553215π2

−464399360515483572π − 353505866738383680) .

The actual order of events:

f (j2, x) is the sought relative quintic,

G (x) =
∏4

i=0 f (jσ
i

2 , x) ∈ Q[x ] defines the right field,

g25(x) is polredabs(G (x)) ∈ Z[x ], and

x5 + αx2 − αx + β ∈ F [x ] is a quintic factor of g25(x).
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7a. How is 5 ramified in g25(x)?

The field K = F [x ]/(x5 + αx2 − αx + β) has a 5-adic
binomial-over-abelian presentation K5 = F5[x ]/(x5 − γ). A general
theory applies, giving one resolvent 5-adic fields

K
(i)
5 = F5[x ]/(x5 − γ(i))

with γ(5) = γ and

γ(i) =
σ(γ(i+1))

γ(i+1)

For i = 5, 4, 3, 2, 1, the discriminant disc(K
(i)
5 /Q5) is 5c with

c = 69, 65, 61, 57, 53. From

c

p2
=

p − 1

p
sb +

p − 1

p2
sa.

and sa = 2 (from disc(F5/Q5) = 58) one gets slopes sb = 3.05, 2.85,
2.65, 2.45, 2.25.
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7b. How is 5 ramified in g25(x)?

As a consequence:

Theorem
The 5-adic decomposition group D inside Gal(L/Q) has size
4 · 56 = 62500. Its unramified, tame, and wild subquotients have size
1, 4, and 56. The six wild slopes s5, s4, s3, s2, s1, s0 are 3.05, 2.85,
2.65, 2.45, 2.25, 2.00. The mean slope is

α =
4

5
s5 +

4

52
s4 +

4

53
s3 +

4

54
s2 +

4

55
s1 +

4

56
s0 +

3

4·56

= 3− 1

12500

and the root discriminant of L is 5α ≈ 124.984.
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