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General Inverse Galois Problem. Given a

finite group G, find number fields with Galois

group G, preferably of small discriminant.

Our case today. G = SU3(F3).2 = G2(F2) of

order 12096 = 26 · 33 · 7. We’ll produce two

related two-parameter polynomials:

F1(p, q, x) = x28 + · · · ∈ Q(p, q)[x],

F2(a, b, x) = x28 + · · · ∈ Q(a, b)[x].

Connections with:

1. Rigid four-tuples in G

2. Motives with Galois group U3, Sp6, G2

3. Three-point covers with Galois group G

4. Number fields with Galois group G
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Some background. The twelfth smallest non-

abelian simple group is

G′ = SU3(F3) = G2(F2)′.

of order 6048 = 25337. One has |Out(G′)| = 2

and the extended group

G = SU3(F3).2 = G2(F2)

embeds transitively into A28 and A36.

Some information on conjugacy classes:

Classes in G′

C |C| λ28 λ36

1A 1 128 136

2A 63 21214 212112

3A 56 391 312

3B 672 391 31113

4AB 2 · 63 4614 4626

4C 378 4622 462414

6A 504 6431 6434

7AB 2 · 864 74 751
8AB 2 · 756 832112 8343

12AB 2 · 504 12231 12262

Classes in G−G′
C |C| λ28 λ36

2b 252 21214 21614

4d 252 4614 4626

6b 2016 6431 6531211

8c 1512 834 8342212

12cd 2 · 1008 12231 12262
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A standard way to construct number fields with
prescribed Galois group is to use rigidity. For
example, up to simultaneous G-conjugation,
there is just one triple (g0, g1, g∞) with

g0 ∈ 4d g0g1g∞ = 1
g1 ∈ 2b 〈g0, g1, g∞〉 = G
g∞ ∈ 12AB

Malle and Matzat computed the corresponding
degree 28 cover P1

x → P1
t :

f(t, x) = A(x)4B(x)− t2239
(
x2 + 4x+ 1

)12
(2x+ 1)

A(x) = x6 − 6x5 − 435x4 − 308x3 + 15x2 + 66x+ 19
B(x) = x4 + 20x3 + 114x2 + 68x+ 13

The preimage of [0,1] = •−−◦ in P1
x:
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The remarkable nature of the Malle-Matzat

cover is reflected in its discriminant:

discx(f(t, x)) = 25763630t18(t− 1)12.

Plugging in t = 1/2 gives a degree twenty-

eight field with Galois group G′ and discrimi-

nant 284342. Carefully chosen other t ∈ Q give

41 fields with Galois group G and discriminant

2j3k.

There is an extensive literature, both theoret-

ical and computational, on rigid three-point

covers.

Rigid z-point covers for larger z are known to

exist, for example coming from Katz’s rigid lo-

cal systems with coefficients in F`. However

the literature is very sparse for them. This talk

presents computational examples with z = 4.
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1. Rigid four-point covers. Mass formulas
give five four-tuples of conjugacy classes in G′

giving rigid four-point covers of P1(C):

(3A, 3A, 3A, 4B),
(4A, 4A, 4A, 4B),
(2A, 2A, 3A, 4A).

(4A, 4A, 4A, 2A),

(4A, 4A, 3A, 3A),

All other quadruples are far from rigid.

Let M0,5 be the moduli space of five labeled
points in the projective line. The left three
four-tuples give the same cover of M0,5 and
this cover has S3 symmetry. The right two
give a cover of M0,5 having S3×S2 symmetry:
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Our covers descend to covers of bases

U3,1,1 := M0,5/S3,

U3,2 := M0,5/(S3 × S2).

They are correlated by a cubic correspondence:

X0
3

xx

3
%%

π0

��

Q(x0, y0)

X1

π1

��

X2

π2

��

Q(x1, y1) Q(x2, y2)

U

3yy 3 $$

Q(u, v)

U3,1,1 U3,2 Q(p, q) Q(a, b)

It is remarkable that the three fields upstairs

are also rational.

We seek to algebraically describe π1 and π2 by

polynomial relations

F1(p, q, x1) = x28
1 + · · · = 0,

F2(a, b, x2) = x28
2 + · · · = 0.
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2A. Motives with Galois group U3. Deligne
and Mostow studied families of covers

yd = f(u1, . . . , un, x)

of the x-line. Two of their first examples are

y4 = (x− 1)3x2
(
x2 + ux− vx− x+ v

)
(genus 4),

y4 =
(
x2 + 2x+ 1− 4u

)2 (
x2 − 2x+ 1− 4v

)
(genus 3).

They prove that the Jacobian J2 of the second
is a factor of the Jacobian J1 of the first.

The 3-torsion points of either cover correspond
to our π0 : X0 → U . There are natural descents
to families of curves

Π1 : C1 → U3,1,1, Π2 : C2 → U3,2.

On 3-torsion, these become our

π1 : X1 → U3,1,1, π2 : X2 → U3,2.

We get explicit polynomials for the πi via this
connection; hundreds of terms in each case.
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2B. Motives with Galois group Sp6. Shioda

studied the family of degree four plane curves

x3+(y3+cy+e)x+(ay4+by3+dy2+fy+g) = 0

in the x-y plane.

He obtained an explicit 1784-term polynomial

with Galois group Sp6(F2) corresponding to

their 2-torsion:

S(a, b, c, d, e, f, g; z) = z28−8az27 + 72bz25 + · · ·

This polynomial is universal for Sp6(F2) and

so, via G = G2(F2) ⊂ Sp6(F2), our polynomials

must be specializations.

In fact, our π0 is given via w = u− v + 1 by

S(1, w,−3u,0,−uw,−uw,−u2; z) = 0.

Our π1 and π2 are given by much more com-

plicated formulas.
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2C. Motives with Galois group G2. Define
matrices a, b, c, and d:

1
1

1
−3 1 1

3 −1 1
9 −3 1
−1 3 −1 2 −1 1




1 3 −1
1 9 −3
−2 1
−9 4

1
1

−3 1 1




1 −1 −3
3 −2

1 −1 3
3 −2 6

1 −1 −3
3 −2

1




10 −5 9 −5 −6
15 −8 18 −9 −9

1
−3 2 −3 1 −6 3 3

9 −5 10 −5 −6
18 −9 15 −8 −9
−2 1 −2 1 1


Then abcd = 1 and the Zariski-closure of the
group 〈a, b, c, d〉 is the algebraic group G2. This
monodromy representation underlies a family
of G2 motives appearing in a classification of
similar families by Dettweiler and Reiter.

In GL7(F2), the matrices generate G2(F2)′ and
(a, b, c, d) is in our rigid class (2A,2A,3A,4A).
Hence π1 : X1 → U3,1,1 also functions as a
division polynomial for a family of G2 motives.

In all three cases, our explicit division polyno-
mials aid in studying the source motives.
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3. Specialization to three-point covers. A
picture of U3,1,1(R) inside the p-q plane and its
complementary discriminant locus (thick):
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To review, the drawn space is the base of our
degree twenty-eight cover π1 : X1 → U3,1,1.

Preimages of the thin curves are three-point
covers, all of positive genus. It would be hard
to construct these three-point covers directly.
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Table of three-point covers obtained from π1
and π2 by specialization. The last fourteen
have monodromy group G′, Galois group G,
and bad reduction set {2,3}. The constant
field extension is always Q(i)/Q.

X0 X311 X32 C0 C1 C∞ g28 g36 µ̄ µ
H ′′ 4A 4B 3B − − 0.3 0
I ′′ 4A 12A 2A − − 0.3 0

b B∗ B 6A 2A 8A 1 0 1 1
M 12A 2A 8B 2 2 1 1
G 4A 6A 3B 2 2 1 1

H ′, G′′ 12A 4A 3B 2 5 1 1
e L′ E,K 4C 4A 8A 3 3 1 1

G′ H 3A 12A 3B 3 5 1 1
a K ′ A 4A 8A 8B 4 7 1 1
c K ′′ C, I 3A 8A 6A 4 6 1 1
d L′′ 6A 4A 6A 4 5 1 1
f F ∗, I ′ F 4A 8B 12B 5 8 1 1

J ′ 4A 12A 8B 5 8 1 1
L 12A 3A 8A 5 8 1 1

M∗ J 6A 12A 8B 7 10 5 5
J ′′ 12A 12A 6A 8 11 4.083 3

The degree 36 resolvent of the third cover:

f36(t, x) =
(
4x4 − 3

)3 (
4x4 − 12x2 + 12x− 3

)6

−39t(x− 1)4
(
2x2 − 1

)8 (
2x2 − 2x+ 1

)4

In general, the one-parameter equations for
specialization are much simpler than the two-
parameter polynomials for the whole family.
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4. Specialization to number fields. A simi-
lar picture of U3,2(R) inside the a-b plane:
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The drawn points (a, b) ∈ U3,2(Q) ⊂ Q2 are
chosen so that K = Q[x]/F2(a, b, x) has dis-
criminant of the form 2j3k. Counting contri-
butions from the first cover too, 376 such fields
with Galois group SU3(F3).2 = G2(F2) are ob-
tained. It would be hard to construct these
fields by purely number-theoretic methods.
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Pairs (j, k) arising from discriminants d = 2j3k

from specializations of F1(p, q, x) and F2(a, b, x)
to G number fields:
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376 fields contribute to the picture, with mul-
tiplicities in discriminants indicated by area.

Considering the Malle-Matzat cover and other
sources as well, there are at least 408 fields
with Galois group G and discriminant 2j3k.
The distribution by the quadratic field Q(

√
−d)

associated to G/G′ is

∂ −6 −3 −2 −1 2 3 6
# 5 6 6 381 7 2 1
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A particular specialization. Eight specializa-
tion points

(u, v) = (−4,−3), (−
1

2
,1), (

1

2
,3), (4,−3), (−32,1), (−

32

81
,

49

81
),

(p, q) = (1,
1

2
),

(a, b) = (−
27

4
,−

1

2
)

give rise to the same number field with Galois
group SU3(F3).2 = G2(F2) and the very small
field discriminant 266346. A defining polyno-
mial is

x28 − 4x27 + 18x26 − 60x25 + 165x24 − 420x23

+798x22 − 1440x21 + 2040x20 − 2292x19

+2478x18 − 756x17 − 657x16 + 1464x15

−4920x14 + 3072x13 − 1068x12 + 3768x11

+1752x10 − 4680x9 − 1116x8 + 672x7 + 1800x6

−240x5 − 216x4 − 192x3 + 24x2 + 32x+ 4.

Close 2- and 3-adic analysis says that the root
discriminant of the Galois closure is

243/163125/72 ≈ 43.39

For comparison, extensive searches have been
done on the smaller group S7 and the larger
group S8, with smallest known Galois root dis-
criminants being 40.49 and 43.99, respectively.
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