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General Inverse Galois Problem. Given a
finite group G, find number fields with Galois
group G, preferably of small discriminant.

Our case today. G = SU3(F3).2 = G»(F5) of
order 12096 = 25.33.7. We'll produce two
related two-parameter polynomials:

F]_(p,q,CU) — $28+"'EQ(}97Q)[$]7
F>(a,b,z) = 728 4 ... € Q(a,b)[x].

Connections with:

1. Rigid four-tuples in G

Motives with Galois group Us, Spg, Go
. Three-point covers with Galois group G
Number fields with Galois group G
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Some background. The twelfth smallest non-
abelian simple group is

G' = SU3(F3) = Go(F2)".

of order 6048 = 2°337. One has |Out(G))| = 2
and the extended group

G = SU3(F3).2 = G2(F2)

embeds transitively into A>g and Aszg.

Some information on conjugacy classes:

Classes in ¢ Classes in G — G’
C |Cl  Aos A36 C |IC|  Aos A36
1A 1 128 136
2A 63 21214 212112 || 5 252 21214 21634
3A 56 3°1 312
3B 672 3°1 31113
4AB 2.63 4614 4626 4d 252 4614 4626
4C 378 4622 462414
6A 504 6431 6434 6b 2016 6431 6°312!1
7TAB 2-864 T4 7°1
SAB 2.756 832112 8343 8¢ 1512 834 8342212
12AB 2-.504 12231 12262 12cd 2-1008 12231 12262




A standard way to construct number fields with
prescribed Galois group is to use rigidity. For
example, up to simultaneous (G-conjugation,
there is just one triple (g9, 91, 9oo) With

go € 4d 9091900 = 1
g1 € 2b (90,91,90) = G

Malle and Matzat computed the corresponding
degree 28 cover PL — P}:

flt,x) = A(@)*B(z) —12%3° (> + 4z + 1) (22 + 1)
A(z) = z°—62° —435z% — 308> 4 1522 + 66z + 19
B(z) = z%+20z°4+ 11422 4+ 68z + 13

The preimage of [0,1] = e—o in P1:




The remarkable nature of the Malle-Matzat
cover is reflected in its discriminant:

discy(f(t,z)) = 2276306304184 _ 1)12,

Plugging in t = 1/2 gives a degree twenty-
eight field with Galois group G’ and discrimi-
nant 284342, Carefully chosen other t € Q give
41 fields with Galois group G and discriminant
273k,

There is an extensive literature, both theoret-
ical and computational, on rigid three-point
COVers.

Rigid z-point covers for larger z are known to
exist, for example coming from Katz's rigid lo-
cal systems with coefficients in F,. However
the literature is very sparse for them. This talk
presents computational examples with z = 4.



1. RIigid four-point covers. Mass formulas
give five four-tuples of conjugacy classes in G’
giving rigid four-point covers of P1(C):

(34, 3A, 3A, 4B), (4A, 4A, 4A,2A),
(4A, 4A, 4A, 4B),
(24, 2A, 3A, 4A). (44, 4A, 3A, 34),

All other quadruples are far from rigid.

Let Mps be the moduli space of five labeled
points in the projective line. The left three
four-tuples give the same cover of Mgps and
this cover has S3 symmetry. The right two
give a cover of Mg 5 having S3 X So symmetry:
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Our covers descend to covers of bases

Uzi11 = Mops/S3;
Uso = Mps/(S3x 52).
They are correlated by a cubic correspondence:
5 X0, Q(xo,¥0)
3 ~3 P G
X1 Xo  Q(z1,y1) Q(z2,y2)

" U " Q(u, v)

K k N
Us 1.1 U3 2 Q(p, q) Q(a,d)

It is remarkable that the three fields upstairs
are also rational.

We seek to algebraically describe w1 and w> by
polynomial relations
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F>(a,b,z2) v3° + - =0,



2A. Motives with Galois group Uj. Deligne
and Mostow studied families of covers

yd: f(U]_,...,’U,n,QZ‘)
of the z-line. Two of their first examples are
v = (z—1)327 (33‘2—|—’LLCE—’U£C—CC—|-U>
(genus 4),

y4 = (w2—|-2:13—|-l—4u)2(x2—2m—|—1—4v)
(genus 3).

They prove that the Jacobian J, of the second
is a factor of the Jacobian J; of the first.

The 3-torsion points of either cover correspond
toour mg : Xg — U. There are natural descents
to families of curves

|_|1 : Cl — U3’1,1, |_|2 : CQ — U372.
On 3-torsion, these become our

w1 X1 —>U3z11, w2 Xo—Uso.

We get explicit polynomials for the m; via this
connection; hundreds of terms in each case.
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2B. Motives with Galois group Spg. Shioda
studied the family of degree four plane curves

3+ (y> +ey+e) e+ (ay* +by > +dy°+ fy+g) = 0

in the z-y plane.

He obtained an explicit 1784-term polynomial
with Galois group Spg(F>) corresponding to
their 2-torsion:

S(a,b,c,d,e, f,g,z) = 228 _8az2"’ + 72b22° + .-

This polynomial is universal for Spg(F>) and
so, via G = G»(F») C Spg(F>), our polynomials
must be specializations.

In fact, our mg is given via w=u—v+ 1 by

S(1,w, —3u, 0, —uw, —uw, —u?; z) = 0.

Our m1 and mo are given by much more com-
plicated formulas.



2C. Motives with Galois group G». Define
' a, b, c, ;
matrices b and d
1 1 3 —1
[ \ A 5 _3
1 -2 1
-3 1 1 -9 4
3 —1 1 1
9 -3 1 1
\—1 3 -12-11 \ -3 1 1
1 -1 -3 10 -5 9 -5 -6
3 -2 \ 15 -8 18 =9 -9
1 -1 3 1
3 -2 6 -3 2-31-6 3 3
1 -1 -3 9 -5 10 -5 —6
\ 3 -2 ) \ 18 —9 15 -8 -9
1 -2 1 -2 1 1

Then abed = 1 and the Zariski-closure of the
group {a,b, c,d) is the algebraic group Go. This
monodromy representation underlies a family
of Go motives appearing in a classification of
similar families by Dettweiler and Reiter.

In GL7(F5), the matrices generate G»(F5)’ and
(a,b,c,d) is in our rigid class (2A,2A,3A,4A).
Hence w1 : X7 — Uz 11 also functions as a
division polynomial for a family of Go motives.

In all three cases, our explicit division polyno-
mials aid in studying the source motives.

9



3. Specialization to three-point covers. A
picture of Uz 1 1(R) inside the p-q plane and its
complementary discriminant locus (thick):
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To review, the drawn space is the base of our
degree twenty-eight cover w1 : X1 — Uz 1 1.

Preimages of the thin curves are three-point
covers, all of positive genus. It would be hard
to construct these three-point covers directly.
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Table of three-point covers obtained from my
and mo by specialization. The last fourteen
have monodromy group G’, Galois group G,
and bad reduction set {2,3}. The constant
field extension is always Q(i)/Q.

Xo X311 Xz | Co C1 Cx | gos g36 b p
H" 4A 4B 3B — — 0.3 0

1" 4A 12A 2A — — 0.3 0

b B~ B 6A 2A 8A 1 o) 1 1
M 12A 2A 8B 2 2 1 1

G 4A 6A 3B 2 2 1 1

H' G" 12A 4A 3B 2 5 1 1

e L E K | 4C 4A 8A 3 3 1 1
G’ H 3A 12A 3B 3 5 1 1

a K’ A 4A 8A 8B 4 7 1 1
c K" C,I | 3A 8A 6A 4 6 1 1
d L 6A 4A 6A 4 5 1 1
f F* T F 4A 8B 12B | 5 8 1 1
J’ 4A 12A 8B 5 8 1 1

L 12A 3A 8A 5 8 1 1

M* J 6A 12A 8B I 10 5 5

N 124 12A 6A | 8 11| 4.083 3

The degree 36 resolvent of the third cover:

fre(t,z) = (42" —3)° (4a* — 122% 4 120 — 3)°

—3%(z — 1)* (222 — 1)° (222 — 20 + 1)*
In general, the one-parameter equations for

specialization are much simpler than the two-
parameter polynomials for the whole family.
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4. Specialization to number fields. A simi-
lar picture of U3,2(R) inside the a-b plane:

\\\\\\\\\\\\\\\\\\\\\
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The drawn points (a,b) € U32(Q) C Q? are
chosen so that K = Q[a:]/FQ(a b,x) has dis-
criminant of the form 273k, Counting contri-
butions from the first cover too, 376 such fields
with Galois group SU3(F3).2 = G»(FF>) are ob-
tained. It would be hard to construct these
fields by purely number-theoretic methods.
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Pairs (4, k) arising from discriminants d = 273%
from specializations of Fy(p, q,x) and F>(a, b, x)
to G number fields:
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376 fields contribute to the picture, with mul-
tiplicities in discriminants indicated by area.

Considering the Malle-Matzat cover and other
sources as well, there are at least 408 fields
with Galois group G and discriminant 273F.
The distribution by the quadratic field Q(v/—d)
associated to G/G’ is

o0|-6 -3 -2 -1 2 36
#| 5 6 6 3817 21
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A particular specialization. Eight specializa-
tion points
(o) = (~4,-3), (5,1, (5,3),(4,-3),(-32,1), (-
1

(p7q> — (1a§)a

(@h) = (-5.-3)

32 49

aaa)a

give rise to the same number field with Galois
group SU3(F3).2 = Go(F») and the very small

field discriminant 290346 A defining polyno-
mial is
28 — 4227 + 182°%° — 6022° 4+ 1652%* — 420223
4798222 — 14402t 4+ 20402°° — 22921°
4247828 — 75627 — 657x1° 4+ 146421
—4920z'* + 3072213 — 1068x1? 4+ 376821
41752210 — 46802° — 111628 + 6722" 4+ 18002°
—240x° — 2162* — 19223 + 2422 + 322 + 4.
Close 2- and 3-adic analysis says that the root
discriminant of the Galois closure is

243/163125/72 ~ 43.39

For comparison, extensive searches have been
done on the smaller group S7 and the larger
group Sg, with smallest known Galois root dis-
criminants being 40.49 and 43.99, respectively.
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XIII. See this paper for other references.
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