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Section 1. Preliminary general remarks

A historical parallel: Galois and Grothendieck

Around 1830, Galois used finite groups to study solutions of
univariate polynomial equations f (x) = 0.

In the 1960s, Grothendieck used reductive algebraic groups to
study solutions of general polynomial equations f (x1, . . . , xn) = 0.

In both cases, the work was not published in a timely way, and was
fully appreciated only much later.



Miscellaneous notes

1. We are using a modification of Grothendieck’s original definition
due to André. This change makes the basic definitions unconditional.

2. In particular, we are always talking about pure motives rather than
mixed motives. We are not considering modern enhancements
involving Chow groups, K -theory, derived categories, and so on.

3. A central player in the full classical theory is the category
M(K ,E ) of motives “over K with coefficients in E ” with K and E
subfields of C. We will simplify throughout by taking K = Q.



0- and 1-dimensional varieties

Many researchers are experts in 0- and/or 1-dimensional varieties.
This expertise is a tremendous asset in trying to learn the theory of
motives. Examples:

For 0-dimensional varieties, the theory of motives reduces to the
theory of continuous linear representations of Gal(Q/Q) into
GLn(C). The usual decomposition groups Dp ⊂ Gal(Q/Q) are
very close to being the decomposition groups WDp needed for
the full motivic theory.
For 1-dimensional varieties, the theory of motives is very close to
the theory of Jacobians. Objects such as the endomorphism
algebra of a Jacobian or the `-adic representations of Gal(Q/Q)
coming from `-primary torsion in J(Q) have direct
generalizations in the full motivic theory.

Looked at motivically, the expected situation for general varieties is
not too different from the more established special case of varieties of
dimension ≤ 1.



Section 2. Cohomology and cycles

Consider smooth projective varieties X over Q. For each such X , one
has the associated compact manifold X (C). Consider the usual
cohomology spaces

H∗(X (C),Q) =

2 dim(X )∑
w=0

Hw (X (C),Q).

For w = 2j even, one has the subspace spanned by the fundamental
classes of codimension j subvarieties defined over Q:

Hw (X (C),Q)alg ⊆ Hw (X (C),Q)

The interplay of all cohomology and the (typically very small) part
represented by algebraic cycles is central to the theory of motives.



Hw(X (C),Q)alg ⊆ Hw(X (C),Q) for dim(X ) = 0

Let f (x) ∈ Q[x ] be a separable degree n polynomial with root set
X (C) ⊂ C. Let f (x) = f1(x) · · · fd(x) be its factorization into
irreducibles, with fj(x) having root set Xj(C). Then

X (C) = X1(C)
∐
· · ·
∐

Xd(C).

Very simply,

H0(X (C),Q) is the space of Q-valued functions on X (C).

H0(X (C),Q)alg is the subspace of functions constant on each
Xj(C).

Note that Gal(Q/Q) acts naturally on X (C) = X (Q) ⊂ Q. Its orbits
are exactly the Xj(C). Its invariants in H0(X (C),Q) form exactly the
subspace H0(X (C),Q)alg.



Hw(X (C),Q)alg ⊆ Hw(X (C),Q) for dim(X ) ≥ 1

Let X be a curve with X (C) connected of genus g . Then

w dimQ(Hw (X (C),Q)alg) dimQ(Hw (X (C),Q))

0 1 1

1 0 2g

2 1 1

For dim(X ) > 1 there are not known to be enough algebraic cycles to
support the Grothendieck formalism. André’s modification is to
introduce an intermediate space of quasialgebraic cycles:

Hw (X (C),Q)alg
∗
⊆ Hw (X (C),Q)qalg ⊆ Hw (X (C),Q).

Working with quasialgebraic cycles, the Grothendieck definitions go
through unconditionally. It is expected, although not needed for the
basic theory, that equality always holds at (*).



Cycles on self-powers X k

The Künneth formula says that cohomology behaves simply with
respect to products in general and self-powers in particular:

H∗(X k(C),Q) = H∗(X (C),Q)⊗k .

However “new” quasialgebraic cycles very typically appear on
self-products:

H∗(X k(C),Q)qalg ⊇
(
H∗(X (C),Q)qalg

)⊗k
.

Sometimes these new cycles have a tautological nature, e.g. the
diagonal ∆ ⊂ X 2. Sometimes these new cycles are very specific to
the variety X being studied, e.g. the graph Γf ⊂ X 2 of a map
f : X → X .



Section 3. Motives and motivic Galois groups

Definition
Let X be a smooth projective variety over Q. Its special motivic
Galois group G 1

X is the group of automorphisms of the vector space
H∗(X (C),Q) which fix all the spaces H∗(X k(C),Q)qalg.

By definition, G 1
X is an algebraic group over Q, and one has

H∗(X k(C),Q)G
1
X ⊇ H∗(X k(C),Q)qalg. (3.1)

Theorem
Equality holds in (3.1) for all k.

Corollary

G 1
X is reductive.



G 1
X for dim(X ) ≤ 1

Dimension 0: For X = Spec Q[x ]/f (x) as before, the spaces
H0(X k(C),Q)alg are easily computed by factoring resolvents of f (x).
From the presence of many algebraic cycles, one gets

G 1
X ⊆ Sn.

In fact, G 1
X is exactly the ordinary Galois group of f (x).

Dimension 1: For X a curve as before, the diagonal ∆ ⊂ X 2 gives
rise to an alternating pairing on H1(X (C),Q). This pairing leads to

G 1
X ⊆ Sp2g ,

with generic equality. In the non-generic case, extra cycles for k = 2
come from endomorphisms of the Jacobian. Extra cycles for k = 4,
6, 8, . . . come mainly from potential endomorphisms of the Jacobian,
but also can come from more exotic sources.



Two mostly formal steps

Tate twists. So far we have been trivializing Tate twists. Repeating
the definitions (not done here!) without trivializing Tate twists gives
the full motivic Galois group GX . There is no change for dim(X ) = 0.
An extra Gm is tacked on for dim(X ) ≥ 1; e.g., for a generic elliptic
curve X , G 1

X = SL2 and GX = GL2.

Projective limits. Taking a projective limit over all X gives a
pro-reductive group G over Q. It fits in an exact sequence

G0 ↪→ G � Gal(Q/Q).

The kernel G0 is conjecturally connected. Thus Grothendieck/André’s
motivic Galois theory is literally an extension of Galois’ classical
Galois theory; however the new part G0 is quite different.



Motives

Fix a field E ⊆ C.

Definition
The category of motives M(Q,E ) is the category of representations
of G on finite-dimensional E -vector spaces. The motivic Galois group
of a motive M ∈M(Q,E ) is the image GM of G on M.

One has a gradation by weight: M(Q,E ) =
⊕

wM(Q,E )w .
Concretely,

1 Any Hw (X (C),E ) is a weight w -motive.

2 Any G-stable subspace of Hw (X (C),E ) is a weight w motive.

3 Any irreducible motive is a Tate twist of a motive as in (2).

The group GM is not just a formal object. Rather it coordinates the
arithmetic of M . Conjecturally, this coordination of a priori disparate
invariants is extremely tight.



Section 4. Role in the Langlands program

In extreme brevity:
1 Modulo some technical conjectures, an irreducible rank n motive

M ∈M(Q,C) gives rise to an L-function

L(M , s) =
∑ an

ns
=
∏
p

1

fp(p−s)
,

with a completion Λ(M , s) = N s/2L∞(M , s)L(M , s).
2 Λ(M , s) should be either ζ(s − w/2) or an entire function. It

should satisfy a functional equation Λ(M , s) = εΛ(M ,w + 1− s).
3 These motivic L-functions together should coincide with the set

of automorphic L-functions Λ(ρ, s) for cuspidal algebraic
automorphic representations ρ of GLn(AdelesQ).

The connection with automorphic representations makes it reasonable
to explicitly classify objects in M(Q,C). E.g., irreducible
M ∈M(Q,C) of rank one and two should respectively correspond to
Tate twists of Dirichlet motives Mχ and modular motives Mf .
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