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Classical language is adequate for studying L-
functions associated to 0- and 1-dimensional
varieties.

Q. What is a good language for studying L-
functions associated to general varieties?

A. The language of motives.

Motives were first defined under a still-unproven
“standard conjecture” by Grothendieck in the
mid 1960s. Fundamental results inspired by
motives were obtained in the next decades,
especially by Deligne, but motives themselves
were regarded by many as illicit. The uncondi-
tional definition we use is due to André in 1994.
There have been many advances in strikingly
diverse directions in recent decades.
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Partial L-functions LS((X,w), s). Let X be a
smooth projective variety over Q of dimension
d. Let bw = dimQH

w(X(C),Q).

For p a prime of good reduction,

|X(Fpk)| =
2d∑
w=0

bw∑
j=1

(−1)wαkw,j

with |αw,j| = pw/2 (Weil, Dwork, Grothendieck,
Deligne).

Define

fX,w,p =
bw∏
j=1

(1− αw,jx) ∈ Z[x],

Lp((X,w), s) =
1

fX,w,p(p−s)
.

For S a finite set of primes including all bad
primes, define

LS((X,w), s) =
∏
p 6∈S

Lp((X,w), s).

We want to understand the LS((X,w), s).
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Desiderata. Inspired by extensive experience

for dim(X) ≤ 1, we’d like a natural factoriza-

tion into irreducibles

LS((X,w), s) =
∏
M

LS(M, s).

For each irreducible, we’d like

A. Local factors Lp(M, s), with p ∈ S.

B. A conductor N =
∏
p∈S p

np.

C. A Gamma-factor L∞(M, s).

D. Analytic properties of L(M, s) =
∏
v Lv(M, s).

E. Equidistribution properties of coefficients.

F. Interpretations of special values L(M,n).
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Special Motivic Galois groups. One has

H∗(X(C),Q)⊗k = H∗(Xk(C),Q)

by the Künneth theorem. Inside H∗(Xk(C),Q)
one has spaces of classes represented by alge-
braic and “quasialgebraic” cycles

H∗(Xk(C),Q)alg ⊆ H∗(Xk(C),Q)qalg. (?)

Definition. The special motivic Galois group
G1
X is the group of automorphisms of the vec-

tor space H∗(X(C),Q) which fixes all the spaces
H∗(Xk(C),Q)qalg.

Grothendieck’s standard conjecture would give
equality in (?), but for the present quasialge-
braic cycles are necessary for a good uncondi-
tional theory.

By definition, G1
X is an algebraic group over Q.

Equality always holds in

H∗(Xk(C),Q)G
1
X ⊇ H∗(Xk(C),Q)qalg,

making G1
X reductive.
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The cases dim(X) ≤ 1.

Points. For X the spectrum of a degree n

number field K = Q[x]/f(x), the inclusion

H0(Xk(C),Q)alg ⊆ H0(Xk(C),Q)

is easily computed by factoring resolvents of
f(x). One gets

G1
X ⊆ Sn

with G1
X being exactly the ordinary Galois group

of f(x).

Curves. For X a geometrically connected curve
of genus g, the pairing on H1(X(C),Q) leads
to

G1
X ⊆ Sp2g,

with generic equality. In the non-generic case,
extra cycles for k = 2 come from endomor-
phisms of the Jacobian. Extra cycles for k = 4,
6, 8, . . . come mainly from potential endomor-
phisms of the Jacobian, but also can come
from more exotic sources.
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Full motivic Galois groups. We have been
trivializing Tate twists. Repeating the defini-
tions without trivializing Tate twists gives the
full motivic Galois group GX. There is no
change for dim(X) = 0 and an extra Gm is
tacked on for dim(X) ≥ 1. E.g., for a generic
elliptic curve X, G1

X = SL2 and GX = GL2.

Projective limits. Taking a projective limit
over all X gives a pro-reductive group over Q,
coming with a surjection

G→ Gal(Q/Q).

The kernel is conjecturally connected.

Representations. The category of motives
M is the category of representations of G on
finite-dimensional Q-vector spaces. It is graded
by weight:

M =
⊕
w∈Z
Mw.

Here Hw(X(C),Q) ∈ Mw. Attention naturally
focuses on irreducible motives M and their mo-
tivic Galois groups GM = Image(G).
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Connections with classical Galois theory.

I. From `-adic representations on H∗(X(C),Q`)
one has canonical sections

G(Q`)←−Gal(Q/Q).

The Tate conjecture says that the image is
open in every reductive quotient.

II. The local groups

{1} ⊂ Pp
Ẑp
⊂ Ip

Ẑ
⊂ Dp inside Gal(Q/Q)

have motivic analogs, some aspects of this the-
ory being conjectural. Roughly, one has

{1} ⊂ Pp
Ẑp×Ga⊂ Ĩp

Ztor

⊂ D̃p inside G.
So the unramified quotient is now a toroidal
rather than profinite completion of Z. The
tame subquotient includes a Ga to allow for
multiplicative reduction. The wild subgroup
Pp, together with its much-studied filtration, is
exactly the same! The slides assume the con-
jectures, the verbal comments will explain how
things become more technical without them.
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III. The classical decomposition group D∞ =
{1, σ} becomes the motivic D̃∞ = C×.D∞. The
new part C× acts on H∗(X(C),C) =

⊕
Hp,q

with z acting on Hp,q as zpzq. The Hodge con-
jecture says that C× is Q-Zariski dense in the
neutral component of G.

Example. The hypergeometric motive

M = H([33], [26],1)

is a summand of H5 of a five-dimensional va-
riety and is on the LMFDB. Local invariants:

(h5,0, h4,1, h3,2, h2,3, h1,4, h0,5) = (1,1,0,0,1,1)

p cp fM,p(x)
2 6 1
3 5 1
5 1 + 6x − 5 · 249x2 + 55 · 6x3 + 510x4

7 1 + 7 · 18x+ 7 · 1040x2 + 76 · 18x3 + 710x4

11 1 + 477x+ 11 · 16752x2 + 115 · 477x3 + 1110x4

13 1 + 883x+ 13 · 45714x2 + 135 · 883x3 + 1310x4

17 1 + 426x+ 17 · 97368x2 + 175 · 426x3 + 1710x4

In particular, conductor = N = 2635 = 15552.
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Lower bounds for motivic Galois groups via
Frobenius elements.

Finite group case. Easy! Let X have dimen-
sion zero with GX ⊆ Sn. Lower bounds come
from Frobenius partitions

Frp ∈ S\n = (Partitions of n).

For example, for X coming from x9 − x− 1,

(Fr2,Fr3,Fr5) = ((9), (6,3), (5,4)).

From Fr2 and Fr5 (or Fr3 and Fr5), GX = S9.

Connected group case. Even easier! Sup-
pose M has GM ⊆ G where G is connected.
For “almost any” pair of conjugacy classes c1,
c2 ∈ G\(Q), the only subgroup H ⊆ G contain-
ing these classes is G itself.

For M = H([33], [26],1), take any distinct

p1, p2 ∈ {5,7,11, . . . ,991,997}.
Then fM,p1

(x) and fM,p2
(x) suffice to prove

GM = CSp4.
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Equidistribution of Frp/pw/2 ∈ G1\
M(R).

Finite group case. Equidistribution known by
Chebotarev density. Example of x9−x−1 and
first 1000 good primes:

Class 81 9 621 72 711 531 · · ·
Freq 1.08

8
1.01

9
0.83
12

1.05
14

1.18
14

1.05
15 · · ·

Numerators will be 1 in the limit.

Connected group case. The Sato-Tate con-
jecture predicts equidistribution. For Sp\4 and
coordinates (t, u) = (χ4, χ5) the density is

1

4π2

√
(t2 − 4u+ 4)(u− 2t+ 3)(u+ 2t+ 3).

Points are Frp/p5/2 from M = H([33], [26],1):
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Responses to the desiderata.

For factorization it’s best to extend coefficients

from Q to

Qcm = (Union of all CM fields in C).

Corresponding to a decomposition into irre-

ducibles, Hw(X(C),Qcm) =
⊕
MM , one has a

factorization

LS((X,w), s) =
∏
M

LS(M, s),

with each LS(M, s) having coefficients in Zcm.

A (bad factors Lp(M, s)) and B (conduc-

tors pcp). The theory of motivic decomposi-

tion groups D̃p gives both.

C (Infinite factors L∞(M, s)). The action of

D̃∞ likewise gives L∞(M, s).

11



D (Analytic Properties). As M ranges over
irreducible motives, the L(M, s) are expected
to range over all irreducible automorphic L-
functions of algebraic type. Moreover, the Tate
conjecture says that this surjection is bijective.

For a given M , one can collect very strong
numerical evidence that the expected analytic
continuation and functional equation hold (e.g.
by Magma’s CheckFunctionalEquation).

E (Equidistribution). `-adic distribution of
fM,p(x) is governed by the image of Gal(Q/Q)
inside GM . Archimedean distribution is conjec-
turally governed by GM itself.

F (Special values). More of the theory of
motives enters. E.g. for M = H([33], [26],1),
numerically L(M,3) = L′(M,3) = 0 and

L′′(M,3) = 12.6191334778913437117846768 .

So there should be two null-homologous sur-
faces on any 5-fold underlying M , with L′′(M,3)
the product of a period and a regulator.
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