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Background on discriminants. We will work

with monic separable polynomials in Z[x],

f(x) = xn + a1x
n−1 + · · ·+ an

= (x− α1) · · · (x− αn).

The associated absolute discriminant is the pos-

itive integer

Df =
∏

i<j

|αi − αj|2.

If f is irreducible one has the field F = Q[x]/f(x)

with discriminant DF satisfying

DF = Df/C
2
f

with Cf a positive integer.

We will generally renormalize to root discrimi-

nants:

df = D
1/n
f dF = D

1/n
F .

One advantage is that if L/F is unramified then

dL = dF .



A non-standard renormalization: score. We

define the score of a degree n polynomial with

root discriminant df to be sf = df/n. Simi-

larly for a degree n field F , sF = dF/n. An

advantage of score is the formula

sf(xd) = |f(0)|1/n−1/dnsf(x).

Example. The polynomial xn− 1 has discrim-

inant D = nn, root discriminant d = n, and

score s = 1. Root plot of x48 − 1:



Polynomial quantities. Let

• an be the minimal root discriminant of a

degree n polynomial;

• bn be the minimal root discriminant of an

irreducible degree n polynomial;

• cn be the minimal root discriminant of a

generic degree n polynomial, meaning a

polynomial with Galois group all of Sn.

Of course,

an ≤ bn ≤ cn.



Field quantities. Let

• dn be the minimal root discriminant of a

degree n field;

• en be the minimal root discriminant of a de-

gree n field F = Q[x]/f(x) with f generic;

• fn be the minimal root discriminant of the

degree n! splitting field Kf ⊂ C of a degree

n generic polynomial f .

One has

an ≤ bn ≤ cn

dn ≤ en ≤ fn

The problem is to understand the asymptotic

behavior of these six quantities as n → ∞.



Lower bounds. Odlyzko’s zeta-function-based

theory gives a lower bound d′n on dn. If one as-

sumes the generalized Riemann hypothesis one

gets a larger lower bound d′′n on dn. In small

degrees (say n ≤ 100) it is known that dn/d′′n
is small, typically less that 1.02.

The d′n and d′′n are each increasing with

lim
n→∞ d′n = 4eγπ ≈ 22.3816

lim
n→∞ d′′n = 8eγπ ≈ 44.7632

Since

dn ≤ bn, cn, en, fn

Odlyzko’s theory gives lower bounds on bn, cn,

en, and fn too. No better lower bounds are

known!



Upper bounds on dn. An old “cherished dream

of Artin and Hasse” was that dn → ∞. Golod

and Shafarevich (1964) destroyed this dream

when they found infinite class field towers

F = H0 ⊂ H1 ⊂ H2 ⊂ · · ·

with Hk unramified over Hk−1 and hence all Hk

having root discriminant the same as F .

Martinet (1978) showed that even the degree

20 field Q(cos(2π/11),
√
2,

√
−23) has an infi-

nite class field 2-tower. Thus

dn ≤ 114/523/2231/2 ≈ 92.4

for n of the form 5·2j. By working with slightly

ramified towers, Hajir and Maire (2001) showed

dn < 83.9 for n of the form 3 · 2j.



Upper bounds on an (Simon 1999). The

polynomial fn = Φm+1Φm+2 · · ·Φ2m−1Φ2m has

root discriminant of the form

λ
√
n+O((logn)2)

with λ = π
3e2

4/3∏
p1/(p

2−1) ≈ 0.507.

(Example of Φ8Φ9Φ10Φ11Φ12Φ13Φ14: n =

46, d ≈ 6.31; d/
√
n ≈ 0.93, s = d/n ≈ 0.14)



Upper bounds on bn (Scholz 1938; Simon

1999). The polynomial gn = Φ2·3·5·7···pk has

root discriminant asymptotic to

e2γn
log logn

logn
.

These are the best current upper bounds on

bn.

(Example of Φ210: n = 48, d ≈ 29.31, d/
√
n ≈

4.23, and s = d/n ≈ 0.61.)



Results on cn and en for small n. For n ≤ 7,

generic polynomials simultaneously giving the

smallest polynomial root discriminant cn and

smallest field root discriminant en:

n f(x) Df df sf
2 x2 − x− 1 3 1.73 0.87

3 x3 − x2 − 1 23 2.84 0.95

4 x4 − x3 − 1 229 3.89 0.97

5 x5 − x4 − x3 + x2 − 1 1609 4.38 0.88

6 x6 − x5 + x3 − x2 +1 14731 4.95 0.83
7 1,−1,−1,0,1,1,−1,−1 184607 5.65 0.81

In degrees 8-23, the current records (Simon

1999) towards cn and en again agree and com-

pare with Odylzko lower bounds as follows:
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Upper bounds on cn and en from trinomials.

Let

f(x) = xn + axm + b.

If n and m are relatively prime then

Df = |nnbn−1 − (−1)nmm(n−m)n−manbm−1|.
As we are looking for small discriminants, we

take b = ±1. Taking a = ±1 then makes the

first term larger in absolute value and in large

degrees scores become very close to 1. Taking

a = ±2 gives smaller scores, but non-generic

polynomials.

(x48+x23+1 with score 0.99999999999999992

and x48 + 2x23 + 1 with score 0.93, but re-

ducible.)



Upper bounds on cn and en from quadrino-

mials. Consider

f(x) = xn + axm + bxr + c.

with n > m > r > 0 and a, b, c ∈ {−1,1}. Scores

tend to be near 1. All scores < 0.93 arising in

degrees 70 ≤ 100, with the lowest scores for

each degree connected by straight lines:

70 75 80 85 90 95 100

0.84

0.88

0.92

Polynomials qn(x) giving rise to the lowest scores

in even degrees have one of three forms:

x4k+2 + xk+1 + xk +1 if n = 4k +2

x4k + xk+1 − xk−1 +1 if n = 4k with k even

x4k + xk+2 − xk−2 +1 if n = 4k with k odd



Roots of the Case 1 polynomial q50(x) = x50+

x13+x12+1 on the left, with score 0.870919.

Note that for |θ| near 0 there are four pairs

of close roots with very close arguments θ; for

|θ| near π/2 there are similarly close roots, but

now with very close moduli r. For |θ| near π

the roots are equally spaced.

Roots of the Case 2 polynomial q48(x) = x48+

x13−x11+1 on the right, with score 0.871762.

Here what happened over the θ-interval [−π, π]

for q50 happens for q48 over [−π,0] and again

over [0, π].



0.99

1

0.99

1

0.99

1

The root plots correspond to q198, q200, q196
which belong to Cases 1, 2, and 4 respectively.

Points (r, θ) with r the modulus of a root and

θ ∈ [−π, π] the argument of the same root are

plotted. To make distances approximately cor-

rect, each root plot should be compressed ver-

tically by a factor of 80.

From computations out through degree 1200,

it seems that the scores of qn converge to a

constant near 0.84674.



Upper bounds on cn and en from perturbing

singular polynomials. Example:

(x4 + x3 + x2 + x+1)m − x2m−1

seems to have scores tending to 53/4/4 ≈ 0.835

Root plot with m = 25 so that n = 100 and

s = d/n = 0.841738.

Questions: lim inf cn > 0? lim inf en > 0??



Upper bounds on fn from Borisov’s (1998)

abc-polynomials. For b, c, relatively prime

positive integers put a = b+ c and

fa,b,c(x) =
bxa − axb + c

(x− 1)2

so that the degree is n = a−2. The coefficients

increase arithmetically from b by steps of b to

bc and then decrease arithmetically by steps of

c to c, e.g.

f8,1,7(x) =

x6 +2x5 +3x4 +4x3 +5x2 +6x+7

f8,3,5(x) =

3x6 +6x5 +9x4 +12x3 +15x2 +10x+5

The polynomial discriminant is

Da,b,c = 2aa−3ba−4ca−4

so that a prime divides Da,b,c iff it divides abc.

Galois root discriminants are small, e.g.

D8,1,7 = 211/474/5 ≈ 31.9088

D8,3,5 = 211/434/552/3 ≈ 47.3707



There are b− 1 roots inside the unit circle and

c−1 roots outside the unit circle. There is one

real root if a is odd and no real roots if a is

even. A root plot of f23,7,16:

It follows that Gal(fa,b,c) is inside the alternat-

ing group iff either (a is twice an odd square)

or (b and c are an odd square and twice an

odd square). The only known cases of smaller

Galois group are Gal(f8,b,c) = PGL2(5) ⊂ S6.



Ramification behaves very regularly. Suppose

p|abc. The ramification at p is tame iff one of

a, b, c is p. The next simplest case is when

otherwise ordp(abc) = 1. Then all wild slopes

at p are 1 + 1/(p− 1).

The only completely tame fields are for {a, b, c}
has the form {n+2, n,2} with (n, n+2) a twin

prime pair. For these the Galois root discrimi-

nant is

21−1/nn1−1/(2n−4)(n+2)1−1/n ≈ 2n2.

Even when wild ramification is allowed, 2n2

seems a sharp asymptotic minimum, and we

haven’t seen lower GRD’s in other contexts.

So,

Question: lim inf fn/n2 = 2?


