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Abstract We consider zero-sum games (A,−A) and coordination games
(A,A), where A is an m-by-n matrix with entries chosen independently with
respect to the Cauchy distribution. In each case, we give an exact formula
for the expected number of Nash equilibria with a given support size and
payoffs in a given range, and also asymptotic simplications for matrices of
a fixed shape and increasing size. We carefully compare our results with
recent results of McLennan and Berg on Gaussian random bimatrix games
(A,B), and describe how the three situations together shed light on random
bimatrix games in general.
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1 Introduction

We work throughout in the classical setting of m-by-n bimatrix games
(A,B). It is natural to ask about the number of Nash equilibria and the
distribution of their support size k and payoffs (λ1, λ2) for “random” games.
Thrall and Falk (1965) and Faris and Maier (1987) pursued such questions
in the zero-sum setting (A,−A). They encountered intractable multivariate
integrals and focused instead on numerical results. Various asymptotic state-
ments were heuristically derived in Berg and Engel (1998), Berg and Weigt
(1999), and Berg (2000) via remarkable statistical mechanics techniques.
Finally, a definitive result when A and B are independent was recently
obtained by McLennan and Berg (2005).

Our Theorems 1 and 2 treat two extreme cases of bimatrix games, ob-
taining a simple formula in each case. The key technical idea is to make
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randomness rigorous by using the Cauchy density

fc(u) =
1
π

1
u2 + 1

, (1)

instead of the uniform or Gaussian density used by the above authors. The-
orem 1 then gives the exact joint distribution of (k, λ1, λ2) = (k, λ,−λ) in
the case of zero-sum games (A,−A). Similarly, Theorem 2 gives the exact
joint distribution of (k, λ1, λ2) = (k, λ, λ) in the case of coordination games
(A,A). The zero-sum case is special in that it is known a priori that a ran-
dom game has only one Nash equilibrium. This fact is used crucially in the
proof of Theorem 1. In turn, Theorem 1 is used in the proof of Theorem 2.
Figure 1 and its caption give a first indication of our results in the special
case of square matrices, where κ1 = k/m = k/n is the common support
fraction.
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Fig. 1 Pairs (κ1, λ) corresponding to 100-by-100 Cauchy-random games. The 200
points in the bottom right represent the unique equilibria in 200 zero-sum games.
A 100-by-100 Cauchy-random coordination game has on average about 2.66×1016

Nash equilibria. The 200 points in the top left represent 200 randomly chosen
equilibria from 100-by-100 coordination games. If 100 were replaced by 100u2,
then the corresponding clouds would contract by a linear factor of u about their
respective asymptotic means, (1/2, 0) and (1− 2−1/2, tan(2−3/2π)) ≈ (0.29, 2.02).

Section 2 states our theorems precisely and places them in the con-
text of previous work on Nash equilibria of m-by-n games, especially the
McLennan-Berg theorem which is in a strong sense intermediate between
our two theorems. Section 3 presents a lemma on Cauchy-random bimatrix
games, valid for general correlations, not just our extremes B = ±A. Sec-
tion 4 proves Theorems 1 and 2. Section 5 centers on Corollaries 1 and 2,
each of which describes asymptotic behavior associated to the correspond-
ing theorem. Sections 3-5 all close by elaborating on the relation of our work
with the McLennan-Berg theorem, with (42)-(46) at the end of Section 5
refining the McLennan-Berg asymptotics.
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Section 6 concludes by graphing and discussing the main asymptotic
quantities. We regard our Theorem 1, the McLennan-Berg theorem, and our
Theorem 2 as three quantitative anchor points. We describe how these three
points give one confidence in certain qualitative expectations about Nash
equilibria of random bimatrix games for general notions of randomness, or
even in situations where “random” is not mathematically well-defined.

2 Statement of theorems

First we review the setting of bimatrix games and set up our notations.
There are two players and a game between them is given by a pair of m-by-n
matrices (A,B). Players 1 and 2 move simultaneously, choosing probability
vectors x = (x1, . . . , xm) and y = (y1, . . . , yn)t respectively. The game ends
by Player 1 and 2 receiving payments λ1 = xAy and λ2 = xBy respectively.

A pair of strategies (x, y) is called a Nash equilibrium if neither player
can improve his return by making a unilateral change in strategy. In general,
there may be infinitely many Nash equilibria. However outside a subset of
codimension one in matrix space, games (A,B) have only finitely many Nash
equilibria. In this case, the strategies x and y in a Nash equilibrium (x, y)
have the same number k ∈ {1, . . . ,min(m,n)} of non-zero components. We
call k the support size of (x, y).

Fix a probability measure measure µ with a continuous density fµ. In
considering random bimatrix games (A,B), we always require that the en-
tries aij and bij be all distributed with respect to µ. We allow correlation be-
tween aij and bij , but otherwise require independence among the entries. We
mostly restrict attention to the three simplest types of correlation, which we
index by t = −, 0, and +. In order, these are the zero-sum case aij = −bij ,
the neutral case where aij and bij are chosen independently, and the coor-
dination case aij = bij . The main problem is then to compute Eµ,t

m,n,k, the
average number of Nash equilibria of support size k for µ-random m-by-n
t-correlated bimatrix games.

For k = 1 and all µ, the answer is given by three easily derived formulas,

Eµ,−
m,n,1 =

m!n!
(m + n− 1)!

, (2)

Eµ,0
m,n,1 = 1, (3)

Eµ,+
m,n,1 =

mn

m + n− 1
. (4)

Formula (2) first appeared in Goldman (1957). Formulas (3) and (4) have
been the starting point for recent research, see e.g. Powers (1990), Stanford
(1995) and Stanford (1999), Roberts (2005) respectively. However the case
k = 1 is not representative of the general case because it is only in this case
that Eµ,t

m,n,k is independent of µ.
Thrall and Falk (1965) and Faris and Maier (1987) sought formulas for

Eµ,−
m,n,k for µ a uniform or Gaussian measure and k > 1 and obtained nu-

merical results. Their work provided the starting point for our work here.
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We work instead with the Cauchy measure c with density function (1) and
cumulative distribution function Fc(u) = 1/2+arctan(u)/π. Then the inte-
grals involved become feasible, and give information about not just support
sizes but also payoffs.

Theorem 1 For Cauchy-random m-by-n zero-sum games, the probability
that the unique Nash equilibrium has support size k and payoff (λ,−λ) with
a ≤ λ ≤ b is (

m

k

)(
n

k

)
k

∫ b

a

Fc(λ)m−1Fc(−λ)n−1fc(λ)dλ. (5)

For (a, b) = (−∞,∞), the integral evaluates to the Beta-value B(m,n) =
(m− 1)!(n− 1)!/(m + n− 1)!. Thus

Ec,−
m,n,k =

(
m

k

)(
n

k

)
kB(m,n), (6)

a generalization of (2) in the setting µ = c. Theorem 1 says in particular
that k and λ are statistically independent, as only k appears outside the
integral in (5) while only λ appears inside the integral. Figure 1 illustrates
this independence, and contrasts it with the negative correlation one has in
the setting of Theorem 2.

McLennan (2005) worked with the Gaussian measure g with density
fg(u) = exp(−u2/2)/

√
2π and cumulative distribution function Fg(u) =

1/2 + erf(u/
√

2)/2. He obtained a result in the neutral case t = 0 even
for games with arbitrarily many players. McLennan and Berg (2005) made
this result more explicit in the case of two players and derived asymp-
totic consequences. The main two-player result gives simultaneous infor-
mation about support sizes and renormalized payoffs Λ1 = λ1/||y|| and
Λ2 = λ2/||x||, analogously to (5). Here || · || indicates Euclidean norm, as in
||(x1, x2)|| =

√
x2

1 + x2
2. Integrating over all Λ1 and Λ2, one gets

Eg,0
m,n,k =

(
m

k

)(
n

k

)
k

22k−2π
· (7)∫ ∞

−∞
Fg(Λ1)m−ke−kΛ2

1/2dΛ1

∫ ∞

−∞
Fg(Λ2)n−ke−kΛ2

2/2dΛ2,

a generalization of (3) in the setting µ = g.
The referee of the first version of this paper pointed us to the more

recent work on this subject. Inspired by the McLennan-Berg theorem and
its formal similarity to our Theorem 1, we then found the following theorem
for t = +. Again for us, the good measure to use is the Cauchy measure c.

Theorem 2 For Cauchy-random m-by-n coordination games, the expected
number of Nash equilibria with support size k and payoff (λ, λ) satisfying
a ≤ λ ≤ b is (

m

k

)(
n

k

)
k

∫ b

a

Fc(λ)m+n−k−1Fc(−λ)k−1fc(λ)dλ. (8)
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For (a, b) = (−∞,∞), this becomes

Ec,+
m,n,k =

(
m

k

)(
n

k

)
kB(m + n− k, k), (9)

a generalization of (4) in the case µ = c.

3 A lemma on the persistence of equilibria in the presence of
additional pure strategies

From the definition of Nash equilibrium, it is clear that (x, y) is an equilib-
rium for an m-by-n bimatrix game (A,B) if and only if

x′Ay ≤ xAy for all x′ ∈ ∆r
m, (10)

xBy′ ≤ xBy for all y′ ∈ ∆c
n. (11)

Here ∆r
m is the simplex of probability row m-vectors and ∆c

n is the simplex
of probability column n-vectors.

In the proof of Lemma 1, we use that convolution is additive with re-
spect to width for the Cauchy measure. To say this precisely, recall that
for probability measures µ1 and µ2 with densities f1(u) and f2(u) respec-
tively, the convolution µ1 ∗ µ2 is the probability measure with density∫∞
−∞ f1(x)f2(u − x)dx. For w > 0, let cw be the width w Cauchy measure

with density

fcw(u) =
1
w

fc(u/w) =
1
π

w

w2 + u2
.

Then the precise statement is cw1 ∗ cw2 = cw1+w2 . For detailed elementary
proofs, see either Dwass (1985) or Nelson (1985); for the general context of
stable distributions, see Rose and Smith (2002).

Lemma 1 Let k, m, and n be positive integers with k ≤ m,n. Let (A′, B′) be
a k-by-k bimatrix game with entries (aij , bij). Let ((x1, . . . , xk), (y1, . . . , yk)t)
be a Nash equilibrium with corresponding payoff (λ1, λ2). Consider (A′, B′)
embedded as the upper left corner in an m-by-n bimatrix game (A,B) with
the remaining entries (aij , bij) independently chosen with respect to some
bivariate distribution with both marginals the Cauchy measure c. Let x =
(x1, . . . , xk, 0, . . . , 0) and y = (y1, . . . , yk, 0, . . . , 0)t. Then the chance that
(x, y) is an equilibrium for (A,B) is Fc(λ1)m−kFc(λ2)n−k.

Proof. For all extensions (A,B), one has simply λ1 = xAy and λ2 = xBy.
Let x(i) ∈ ∆r

m be the ith vertex so that x(i)u = δiu. Similarly let y(j) ∈ ∆c
n

be the jth vertex so that y(j)u = δju. Then, by considerations of convex
combinations, (10) and (11) hold if and only if the extreme special cases

x(i)Ay ≤ λ1 for all i = k + 1, . . . ,m, (12)
xBy(j) ≤ λ2 for all j = k + 1, . . . , n (13)
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hold. For i = k+1, . . . ,m and j = 1, . . . , k, the quantity aijyj is distributed
according to cyj . So, for each i = k + 1, . . . ,m,

x(i)Ay =
k∑

j=1

aijyj

is distributed according to

cy1 ∗ · · · ∗ cyk
= cy1+···+yk

= c1 = c.

For each such i, the chance that x(i)Ay ≤ λ1 is Fc(λ1). Similarly, for each
j = k + 1, . . . , n,

xBy(j) =
k∑

i=1

xibij

is also distributed according to c. So for each such j, the chance that
xBy(j) ≤ λ2 is Fc(λ2). The (m−k) conditions on A in (12) and the (n−k)
conditions on B in (13) are all independent because they involve different
aij and bij . This yields the product formula given by the lemma. ut

The Gaussian analog. Let gw be the Gaussian measure with mean 0 and
standard deviation w. Then one has the familiar fact gw1 ∗ gw2 = g√

w2
1+w2

2
.

From this fact, one can deduce a lemma analogous to Lemma 1 where
Cauchy is changed to Gaussian and the payoffs λi are replaced by the renor-
malized payoffs Λi introduced before (7). This analogous lemma plays an
important role in the proof of (7).

4 Proofs of the two theorems

Proof of Theorem 1. Let fc,−
m,n,k(λ) be the density of Nash equilibria of sup-

port size k and payoff (λ,−λ) in Cauchy-random m-by-n zero-sum games.
We need to prove

fc,−
m,n,k(λ) =

(
m

k

)(
n

k

)
kFc(λ)m−1Fc(−λ)n−1fc(λ) (14)

for all (m,n, k) with 1 ≤ k ≤ m,n. Lemma 1 says that if (14) holds for
(k, k, k) then it holds for (m,n, k) for all m,n ≥ k. By induction, we can
assume that (14) holds for all (m,n, k) with k less than a given ` and need
only prove the instance

fc,−
`,`,`(λ) = `Fc(λ)`−1Fc(−λ)`−1fc(λ) (15)

of (14). We drop the superscripts c and − in the rest of this proof, since
they never change.
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To establish (15), we prove that the Fc(λ)a-moments of both sides co-
incide, with a = 0, 1, 2, . . . . Taking moments of the left side of (15), and
using Lemma 1 at the first step, we have∫ ∞

−∞
f`,`,`(λ)Fc(λ)adλ

=
(

` + a

`

)−1 ∫ ∞

−∞
f`+a,`,`(λ)dλ

=
(

` + a

`

)−1

E`+a,`,`

=
(

` + a

`

)−1
(

1−
`−1∑
k=1

E`+a,`,k

)

=
(

` + a

`

)−1
(

1−
`−1∑
k=1

(
` + a

k

)(
`

k

)
kB(` + a, `)

)
. (16)

Taking moments of the right side of (15), via the substitution x = Fc(λ) to
obtain the standard Beta integral, we have∫ ∞

−∞
`Fc(λ)a+`−1Fc(−λ)`−1fc(λ)dλ = `

∫ 1

0

xa+`−1(1− x)`−1dx

= `B(a + `, `). (17)

Setting the right sides of (16) and (17) equal, rearranging, and abbreviating
`+a by w, we see that all the Fc(λ)a-moments of the two sides of (15) agree
if and only if ∑̀

k=1

(
w

k

)(
`

k

)
kB(w, `) = 1

holds for all w ≥ `. This equation indeed holds because the kth term of
the left side can be interpreted as the probability that a randomly chosen
`-element subset of {1, . . . , w + ` − 1} and a randomly chosen w-element
subset of {1, . . . , w + `− 1} intersect in k elements. ut

Proof of Theorem 2. Let fc,+
m,n,k(λ) be the density of Nash equilibria of

support size k and payoffs (λ, λ) in Cauchy-random m-by-n coordination
games. We need to prove

fc,+
m,n,k(λ) =

(
m

k

)(
n

k

)
kFc(λ)m+n−k−1Fc(−λ)k−1fc(λ) (18)

for all (m,n, k). Again by Lemma 1, it suffices to prove the special case of
equal indices,

fc,+
`,`,`(λ) = `Fc(λ)`−1Fc(−λ)`−1fc(λ). (19)

Comparing (19) with (15), we see that it suffices to prove

fc,+
`,`,`(λ) = fc,−

`,`,`(λ) (20)
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for all `.
Now in general, suppose (A,B) is a `-by-` bimatrix game with only

finitely many Nash equilibria. Let Aadj and Badj be the corresponding ad-
joint matrices, so that Aadj = det(A)A−1 and Badj = det(B)B−1 when the
right sides are defined. A necessary condition for (A,B) to have a Nash
equilibrium of support size ` is that the row sums of Aadj all have the same
sign and the column sums of Badj all have the same sign. Then (A,B) has
a unique Nash equilibrium of support size `, given by the formulas

x = r`B
nadj, y = Anadjc`.

Here Bnadj is the normalized adjoint of B, i.e. Badj/σ(Badj) where σ(Badj) is
the sum of the entries of Badj; similarly, Anadj = Aadj/σ(Aadj). Also r` and
c` are row and column `-vectors with all entries 1. With these definitions,
xi is the ith column sum of Bnadj and yj is the jth row sum of Anadj.

From the previous paragraph, one sees that (A,B) has a unique Nash
equilibrium with support size ` if and only if (A,−B) does. In this case,
the equilibrium (x, y) for (A,B) is also an equilibrium for (A,−B), with
the payoff to Player 1 being xAy in both cases. Taking B = A relates the
zero-sum case to the coordination case in the way we need to establish (20).
In fact, our argument shows that (20) holds with c replaced by any measure
µ with an even density function. ut

The case t = 0. McLennan considered the chance that a Gaussian-random `-
by-` neutral game has a Nash equilibrium with support size ` and normalized
payoffs (Λ1, Λ2) in a rectangle R. He proved that this chance is the integral
of

fg,0
`,`,`(Λ1, Λ2) =

1
22`−2

(√
`

2π
e−`Λ2

1/2

)(√
`

2π
e−`Λ2

2/2

)
(21)

over R. From this special case, and the Gaussian lemma discussed at the
end of the last section, one gets the full (g, 0) case underlying (7). The
obstruction to likewise establishing the (c, 0) case is that there does not
seem to be a formula for fc,0

`,`,`(λ1, λ2) analogous to (21).

5 Two corollaries describing asymptotics

In this section, we derive the asymptotic behavior associated to our two
theorems in the limit of large matrices of a given shape. We work first
at a basic level corresponding to means and then at a more refined level
corresponding to variances. In terms of Figure 1, the basic level gives the
central point of the clouds and the qualitative fact that the clouds contract
on their central points as matrix sizes increase. The refined level gives more
information on the shape of the clouds and how fast they contract.

Basic asymptotics: first derivatives and means. It is best to change variables
and work with s, r1, r2, κ1, κ2, κ, and ν, rather than m, n, k, and λ. The size
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of an m-by-n matrix is s = m+n. The shape of an m-by-n matrix is the pair
(r1, r2) = (m,n)/s. If a Nash equilibrium of an m-by-n bimatrix game has
support size k, then the support fractions of Player 1 and 2 are respectively
κ1 = k/m and κ2 = k/n. The total support fraction is κ = κ1 + κ2. Finally,
ν = 2/π arctan(λ) is a convenient renormalization of the payoff λ.

To pass from the old variables to the new ones, we use the formulas,

m = r1s, n = r2s, k = r1r2κs = r1κ1s = r2κ2s, λ = tan(πν/2).

There are three relations among our seven new variables,

r1 + r2 = 1, κ1 = r2κ, κ2 = r1κ.

We view s, r1, κ, and ν as our main new variables. However we systemati-
cally use r2, κ1, and κ2 as abbrevations, so as to keep symmetries and other
intuitive underpinnings of formulas as evident as possible.

Let R be the rectangle

0 < κ ≤ min(
1
r1

,
1
r2

), −1 < ν < 1 (22)

in the κ-ν plane. A Nash equilibrium of an m-by-n game gives rise to a
point (κ, ν) in R. The corollaries we are presently deriving describe the
distribution of these points as s tends to ∞.

Write (e1, e2) = (r1, r2) in the zero-sum case t = − and (e1, e2) =
(1− r1r2κ, r1r2κ) in the coordination case t = +. Translating the formulas
of Theorems 1 and 2 into the present notation gives measures µt

s on R
defined by

µt
s ([κ′, κ′′]× [ν′, ν′′]) =

br1r2sκ′′c∑
k=dr1r2sκ′e

(
r1s

k

)(
r2s

k

)
k

∫ ν′′

ν′

(
1 + ν

2

)e1s−1(1− ν

2

)e2s−1

dν. (23)

Here the summation is over integers satisfying sr1r2κ
′ ≤ k ≤ sr1r2κ

′′. Each
measure µt

s has support the union of the vertical lines κ = k/(r1r2s) for
k = 1, . . . ,min(r1s, r2s). Figure 1 in Section 1 can be viewed as a window on
R. The plotted dots roughly indicate µ−200 and µ+

200 in the case r1 = r2 = 1/2.
Vertical lines, spaced 1/(r1r2s) = 0.02 apart, are visually evident.

Using Stirling’s asymptotic formula s! ∼ ss+1/2e−s
√

2π to eliminate
factorials, one formally gets an approximation for large s,

µt
s ≈ sK(κ, ν)M t(κ, ν)sdκ dν. (24)

Here

K(κ, ν) =
r1r2

π
√

(1− κ1)(1− κ2)
· 1
(1− ν)(1 + ν)

, (25)

M t(κ, ν) =
(1− κ1)r1(κ1−1)(1− κ2)r2(κ2−1)

κr1κ1
1 κr2κ2

2

· (1 + ν)e1(1− ν)e2

2
. (26)
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Equation (34) below rewrites (24) in a slightly stronger form and there
we explain the rigorous sense in which “≈” is to be understood. For the
moment, the formal statement (24) makes clear that it is important to find
the global maxima of M t(κ, ν) on R. To do this, we carry out a critical
point analysis.

The first partials of the quantities M t(κ, ν) are most easily obtained via
logarithmic differentiation and work out as follows.

M−
κ (κ, ν) = r1r2M

−(κ, ν) log
(

1 +
1− κ

r1r2κ2

)
, (27)

M−
ν (κ, ν) =

M−(κ, ν)
(1− ν)(1 + ν)

(r1 − r2 − ν) , (28)

M+
κ (κ, ν) = r1r2M

+(κ, ν) log
(

1 +
(1− κ) + (−1 + κ− 2r1r2κ

2)ν
r1r2κ2(1 + ν)

)
, (29)

M+
ν (κ, ν) =

M+(κ, ν)
(1 + ν)(1− ν)

(1− ν − 2κr1r2) . (30)

In each of the four cases, the partial vanishes if and only if its last factor
does. It is clear from (27) and (28) that M−(κ, ν) has a unique critical
point, namely

〈κ〉c,− = 1, 〈ν〉c,− = r1 − r2. (31)

For the case t = +, algebra shows that again there is a unique critical point.
It is

〈κ〉c,+ =
1

1 + Q
, 〈ν〉c,+ = Q =

√
1− 2r1r2. (32)

These four quantities play a central role in the rest of this paper. They
appear as limiting means in Corollaries 1 and 2. They are graphed together
with analogs in Figures 5 and 6.

Substituting the critical point (31) into the function (26), one gets a
complicated expression which simplifies all the way to give the critical value
V c,− = 1 in the zero-sum case. Substituting (32) into (26), one gets that
the the critical value in the coordination case is

V c,+ = 2−1/2rr2−r1
2 (1 + Q)(1− 3r1r2 − (r1 − r2)Q)(r1−r2)/2. (33)

Figure 2 visually summarizes our critical point analysis so far, in the square
case (r1, r2) = (1/2, 1/2). To facilitate comparison with Figure 1, we use the
variable κ1 = κ/2. The critical point is at (0, 0) and (1 − 2−1/2, 2−1/2) ≈
(0.29, 0.71) in the (κ1, ν) plane, in the zero-sum and coordination case re-
spectively. The critical values are 1 and 1/2 + 1/

√
2 ≈ 1.2071 respectively.

One can rigorously check that the critical value found is indeed the unique
maximum by comparing values with limiting values on the boundary of R.

Refined asymptotics: second derivatives and variances. We now drop the
superscript c, to lighten notation. We drop the superscripts − and + as
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0 1
-1

0

1

0 1
-1

0

1

Fig. 2 Contour graphs of M+(2κ1, ν) and M−(2κ1, ν) in the square case r1 =
r2 = 1/2, with contours spaced by 0.1. The gray region is where M+(2κ1, ν) ≥ 1
and represents where a large Cauchy-random coordination game has Nash equi-
libria. The unique critical point is indicated in each case.

well, as the distinction will be clear. We indicate critical values f(〈κ〉, 〈ν〉)
simply by f crit.

Our word “refined” refers to the fact that we “zoom in” on the κ-ν
plane at the critical point (〈κ〉, 〈ν〉) by using the change of variables x =√

s(κ − 〈κ〉) and y =
√

s(ν − 〈ν〉). Consider now four families of measures
on the new x-y plane, each dependent on s as follows.

µs ≈ K

(
〈κ〉+

x√
s
, 〈ν〉+

y√
s

)
M

(
〈κ〉+

x√
s
, 〈ν〉+

y√
s

)s

dx dy, (34)

≈ Kcrit

(
V +

M crit
κκ x2 + 2M crit

κν xy + M crit
νν y2

2s

)s

dx dy, (35)

≈ KcritV s exp
(

M crit
κκ x2 + 2M crit

κν xy + M crit
νν y2

2V

)
dx dy. (36)

Here the first approximation is a rewriting of (24), shifted from the κ-
ν plane to the x-y plane. An s has dropped out because of the relation
dx dy = s dκ dν. Each of the three approximations holds in the sense that,
applied to any rectangle [x′, x′′]× [y′, y′′], the limiting ratio of the left and
right sides tends to 1 as s → ∞. Approximations (34), (35), and (36) hold
respectively because of the sufficient accuracy of Stirling’s approximation,
quadratic approximation, and the asymptotic formula exp(z) ∼ (1 + z/s)s.

To proceed further, we need to calculate the second critical partials
appearing in (36). The right sides of (27)-(30) are all written in the form
A(κ, ν)B(κ, ν) with B(κ, ν) the last printed factor. As already mentioned,
B(〈κ〉, 〈ν〉) = 0 in each case. Thus critical second derivatives can always
be calculated by A(〈κ〉, 〈ν〉)B′(〈κ〉, 〈ν〉), as the other term in the product
formula vanishes.
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In the zero-sum case, one finds

Kcrit =
1

4π
√

r1r2
,

(
M crit

κκ , M crit
κν , M crit

νν

)
=
(
−1, 0,

−1
4r1r2

)
.

To state our corollary in terms of the payoff λ rather than the adjusted
payoff ν, we use λ = tan(πν/2) and convert via F = (dλ/dν)crit.

Corollary 1 Consider Cauchy-random zero-sum games with increasing size
s = m+n and fixed shape (r1, r2) = (m,n)/s. The probability that the unique
Nash equilibrium has support fractions (κ1, κ2) = (k/m, k/n) = (r2, r1)κ
and payoffs (λ,−λ) satisfying

a√
s
≤ κ− 1 ≤ b√

s
and

c√
s
≤ λ− tan

(π

2
(r1 − r2)

)
≤ d√

s

is asymptotic to

F

4π
√

r1r2

∫ b

a

∫ d

c

exp
(
−x2

2
− F 2y2

8r1r2

)
dx dy. (37)

where F =
π

2
sec2

(π

2
(r1 − r2)

)
.

Verbally, the corollary says that the rescaled quantities x =
√

s(κ − 〈κ〉)
and Fy =

√
s(λ−〈λ〉) are both normally distributed in the limit of large s.

As an immediate but much cruder consequence, the total support fraction
κ is asymptotically distributed according to the point mass at 〈κ〉 while the
payoff λ is asymptotically distributed according to the point mass at 〈λ〉.

Before proceeding to the coordination case, note that∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(
−(x1, . . . , xd)P (x1, . . . , xd)t

)
dx1 · · · dxd =

πd/2√
det(P )

(38)

for P a positive definite symmetric d-by-d matrix. This Gaussian integral
formula with d = 2 lets one check by inspection that (37) evaluates to 1
over the whole plane, as it must. It also is the tool for passing from (39) to
(40) below.

In the coordination case, the quantities needed in (36) work out to

Kcrit =
1

π
√

2
,
(
M crit

κκ , M crit
κν , M crit

νν

)
=
(
−2r1r2(1 + 2Q), −1,

−1
2r1r2

)
V.

To state our corollary in terms of the payoff λ rather than the adjusted
payoff ν, we again convert via F = (dλ/dν)crit.

Corollary 2 Consider Cauchy-random coordination games with increasing
size s = m + n and fixed shape (r1, r2) = (m,n)/s. The expected number
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of Nash equilibria with support fractions (κ1, κ2) = (k/m, k/n) = (r2, r1)κ
and payoffs (λ, λ) satisfying

a√
s
≤ κ− 1

1 + Q
≤ b√

s
and

c√
s
≤ λ− tan(

π

2
Q) ≤ d√

s

is asymptotic to

FV s

√
2π

∫ b

a

∫ d

c

exp
(
−r1r2(1 + 2Q)x2 − Fxy − F 2y2

4r1r2
,

)
dxdy (39)

where F =
π

2
sec2

(π

2
Q
)
. In particular, the mean total number of Nash equi-

libria is
min(m,n)∑

k=1

Ec,+
m,n,k =

1√
Q

V s. (40)

Here Q and V depend on the shape (r1, r2) via (32b), and (33) respectively.

In rough summary, Cauchy-random r1s-by-r2s coordination games have a
very large number of Nash equilibria if s is large. The vast majority of these
equilibria behave similarly in that their (κ, λ) are very close to (〈κ〉, 〈λ〉).
As a numerical example of (40), Theorem 2 says that 100-by-100 Cauchy-
random coordination games have approximately 2.659×1016 Nash equilbria,
and Corollary 2 approximates this with V 200/

√
Q ≈ 2.657× 1016.

Asymptotics for the McLennan-Berg theorem. We conclude this section by
applying our techniques to the McLennan-Berg theorem to obtain sharper
statements than those given in McLennan and Berg (2005). From the dis-
cussion below, the only parts explicitly appearing in this reference are the
numerical approximations on the right sides of (44a) and (44b).

Analogously to (24), Nash equilibria have a density asymptotic to a
function sK(κ)M0(κ, Λ1, Λ2)s. In contrast to (5) and (8), the exponents
under the integrals of (7) depend linearly on s. It is for this reason that
K(κ) depends only on κ and not on Λ1 or Λ2. In fact, K(κ) is 23/2/π times
the first fraction of K(κ, ν) appearing in (25).

The quantity M0(κ, Λ1, Λ2) is likewise quite similar to the previous
M t(κ, ν). From the fact that there is a product of two one-variable integrals
in (7), one gets a factorization M0(κ, Λ1, Λ2) = M0(κ1, Λ1)M0(κ2, Λ2). The
factors work out to

M0(κi, Λi) =
(1− κi)ri(κi−1)

√
2κriκi

i

(
1 + erf

(
Λi√

2

))ri(1−κi)

e−riκiΛ
2
i /2. (41)

Comparing with (26), one sees that the first fraction there appears also in
M0(κ, Λ1, Λ2).

As in our Cauchy cases, the function to be maximized depends on the
parameter r1. However the situation here is more complicated as the cur-
rent function M0(κ, Λ1, Λ2) depends on three variables, rather than the two



14 David P. Roberts

Fig. 3 Contour graphs of M0(2κ1, Λ1, Λ2) corresponding to the square case
r1 = r2 = 1/2 and the window Λ1, Λ2 ∈ [−0.5, 2.5] on the Λ1-Λ2 plane. From left
to right, the three fixed values of κ1 are 0.127, 〈κ1〉 ≈ 0.316, and 0.503. Following
previous conventions, contours are spaced by 0.1 and the gray region is where
M0(2κ1, Λ1, Λ2) ≥ 1. The maximum value in the center figure is the critical value
V ≈ 1.1512. The left and right values of κ1 are chosen such that the maximum
value of M0(2κ1, Λ1, Λ2) is just slightly over 1.1.

variables κ and ν. Figure 3 is as analogous as possible to Figure 2, given
this difference. For general r1, the unique critical point (〈κ〉, 〈Λ1〉, 〈Λ2〉) is
a global maximum and can be found as the solution to

Λ1Λ2 = 2/π, κ = κ1 + κ2, (42)

κi =
e−Λ2

i /2

1 +
√

π/2Λi

(
1 + erf(Λi/

√
2)
) , ri = 1− κi

κ
. (43)

These equations are best obtained from M0(κ, Λ1, Λ2) by logarithmic dif-
ferentiation, as in the Cauchy case.

In the square case (r1, r2) = (1/2, 1/2), solving the system (42), (43)
gives 〈Λ1〉 = 〈Λ2〉 =

√
2/π. Abbreviating q = e1/π(1+erf(1/

√
π)) ≈ 2.1654,

one has further

〈κ1〉 =
1

1 + q
≈ 0.3159 V =

1 + q

2e1/π
≈ 1.1512. (44)

In non-square cases, it does not seem possible to solve (42), (43) for the
three variables κ, Λ1, and Λ2 to get expressions for 〈κ〉, 〈Λ1〉, and 〈Λ2〉 as
explicit classical functions of r1. However one can work with 〈Λ1〉 ∈ (0,∞)
as a parameter, and then very easily express r1, 〈κ〉, 〈Λ2〉 in terms of it. This
suffices for drawing the corresponding dashed curves in Figures 4 and 5.

As in the Cauchy cases, computations with second derivatives show that
the standard deviations of κ, Λ1, Λ2 about their respective limiting means
〈κ〉, 〈Λ1〉, 〈Λ2〉 decay as 1/

√
s. To obtain a formula analogous to (40), we

use the three-variable analog of (36). There is an extra factor of
√

s in the
denominator of this analog because of the extra variable. One gets that the
mean total number of Nash equilibria has the form

min(m,n)∑
k=1

Eg,0
m,n,k ∼

C√
s
V s. (45)
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Using (38) in d = 3 dimensions, one gets C = Kcritπ3/2/
√

det(M crit/V )
where M crit is the symmetric three-by-three matrix of critical second par-
tials of M0(κ, Λ1, Λ2). In the square case (r1, r2) = (1/2, 1/2), one gets

C =
2
√

2(1 + q)√
2 + 2q + πq

≈ 2.4705. (46)

As a numerical example, the McLennan-Berg theorem says that 100-by-100
games have on average about 2.982× 1011 Nash equilibria while (45) gives
the approximation 2.978× 1011.

6 Conclusion

We conclude by graphically comparing the main quantities arising in the
asymptotic analyses of the previous section. We explain in informal game-
theoretic terms how the three cases fit into a coherent whole. As in the
previous section, we consider m-by-n matrices of large size s = m + n
and fixed shape (r1, r2) = (m,n)/s. Our discussion centers on three figures,
each graphing functions of r1. Quantities based on the Cauchy and Gaussian
measures are graphed with solid and dashed curves respectively.

Total number of Nash equilibria. The total number of Nash equilibria in the
cases (c,+), and (g, 0) is asymptotic to Cc,+(V c,+)s and Cg,0(V g,0)s/

√
s by

(40) and (45) respectively.

0.5 1

1.1

1.2

Fig. 4 Functions giving the total number of Nash equilibria. From bottom to
top, V µ,− = 1, V g,0, and V c,+. In the inset, Cc,+ on the bottom and Cg,0 on the
top.

The main part of Figure 4 graphs V c,+ and V g,0. The horizontal axis can
be understood as V µ,−, corresponding to the fact that a µ-random m-by-n
zero-sum game has exactly one Nash equilibrium, independent of µ, m, and
n. The inset of Figure 4 graphs the functions Cc,+ and Cg,0 with vertical
range [0, 5]. The function Cc,+ has values ranging from 1 at the endpoints
to 21/4 ≈ 1.189 in the middle, while Cg,0 approaches ∞ at each endpoint.

The clear import of Figure 4 is that for fixed shape (r1, r2) and suffi-
ciently large size s, as one passes from the extreme of zero-sum games to
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the extreme of coordination games, the mean number of Nash equilibria
rapidly increases. This is a strong phenomenon for all shapes (r1, r2), and
it is strongest in the square case (r1, r2) = (1/2, 1/2).

Support fractions. In each of the three situations (c,−), (g, 0), and (c,+),
Player 1’s support fractions κ1 = k/m cluster closely about the correspond-
ing limiting mean. Figure 5 graphs the three limiting means.

0.5 1

0.5

1

Fig. 5 Limiting mean support fractions for Player 1. From top to bottom,
〈κ1〉c,− = 1− r1, 〈κ1〉g,0, and 〈κ1〉c,+.

Berg and Engel (1998) have investigated the case (g,−). With the help of
[3], we have numerically solved their Equations 6. From these computations,
it seems that always 0.969 < 〈κ1〉g,−/〈κ1〉c,− ≤ 1, with equality both in the
square case r1 = 1/2 and, in a limiting sense, at the endpoints r1 = 0 and
r1 = 1. This comparison gives one confidence that in some situations the
exact definition of randomness is of only secondary importance. Numerical
computation with small games in the settings (c, 0) and (g,+) increases
confidence further.

The simple qualitative import of Figure 5 is as follows. When r1 is near
zero in a zero-sum game, Player 1 is disadvantaged in a competitive environ-
ment. His best defense is to suitably mix nearly all his pure strategies. As
either Player 1 becomes less disadvantaged or as the environment becomes
less competitive, Player 1 plays a smaller fraction of his pure strategies in
Nash equilibria.

Payoffs. For payoffs, we consider the Cauchy case only. The Gaussian case is
qualitatively similar, but quantitative comparison across measures requires
that one enter into a number of scaling issues. In each of the two situations
(c,−) and (c,+), Player 1’s payoffs λ cluster closely about the corresponding
limiting mean. Figure 6 graphs the limiting means 〈λ〉c,− and 〈λ〉c,+, and
also an approximation to 〈λ〉c,0, obtained by extrapolating from games with
s ≤ 20.

Figure 6 confirms intuitive expectations. For any given r1, as the cor-
relation between the interests of the players increases, the return to each
player at an average Nash equilibrium increases. In the zero-sum and neu-
tral cases, as r1 increases, the return to Player 1 increases as well. The fact
that 〈λ〉c,+ has a global minimum at r1 = 1/2 corresponds to the fact that
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0.5 1

-5

5

10

Fig. 6 Limiting mean payoffs to Player 1. From bottom to top, 〈λ〉c,− =
− cot(πr1), an approximation to 〈λ〉c,0, and 〈λ〉c,+.

coordination when cooperation is disallowed is difficult: it is better for both
players if one player has most of the control.
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