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Example. The distribution of support sizes k
in Cauchy-random zero-sum 50-by-70 matrix
games. The most common support sizes are
k = 29 and k = 30, with frequencies 14.8%
and 14.6% respectively.
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We work always with zero-sum games between
two players.

Familiar Example of Rock-Paper-Scissors.
“Rock smashes scissors, scissors cuts paper,
paper suffocates rock.” Coded up in a matrix:

Column Player
Rock Paper Scissors

Row Rock 0 −1 1
Player Paper 1 0 −1

Scissors −1 1 0

Kids know that best play is to randomly mix
the strategies. In code, row’s best strategy is

x = (x1, x2, x3) = (
1

3
,
1

3
,
1

3
).

Column’s best strategy is similarly

y = (y1, y2, y3) = (
1

3
,
1

3
,
1

3
).

This is a fair game, in the sense that on av-
erage the column player pays the row player
λ = 0.



Example of biased Rock-Paper-Scissors.

Column Player
Rock Paper Scissors

Rock 0 −1 1
Row Paper 1 c −1

Player Scissors −1 1 0

Unique solution if 0 ≤ c < 3:

(x1, x2, x3) =
(
1

3
+

c

9
,
1

3
,
1

3
−

c

9

)
(y1, y2, y3) =

(
1

3
−

c

9
,
1

3
,
1

3
+

c

9

)
λ =

c

9
(Each player still mixes all three strategies.)

Unique solution if c > 3:

(x1, x2, x3) =
(
2

3
,
1

3
, 0

)
(y1, y2, y3) =

(
2

3
, 0,

1

3

)
λ =

1

3
(Each player now uses only two strategies.)



General set-up. A game is given by an m-by-n

matrix A = (aij).

The row player can choose to mix his strategies

according to any probability vector x = (xi).

The column player can choose to mix his strate-

gies according to any probability vector y =

(yj).

Theorem (von Neumann (1928)) For “al-

most all” games, there is a unique best strat-

egy mix x for the row player and a unique best

strategy mix y for the column player.

Theorem (Shapley & Snow (1950)) In their

mixed best strategies, both players mix the

same number k of their pure strategies.

The number k is the support size of the game.



A typical 5-by-7 game:

−18 −54 −70 −93 40 −25 −64
−1 93 49 141 −116 −417 89

173 5 −347 −2716 254 83 58
−652 −84 −66 −119 76 1212 −591

33 −80 53 18 219 47 196

Its solution:

k = 4

x ≈ (0,32%,3%,7%,58%)

y ≈ (29%,50%,0,3%,0,18%,0)

λ ≈ −21.93

The game and its solution again:

−21.93 29% 50% 3% 18%
−18 −54 −70 −93 40 −25 −64

32% −1 93 49 141 −116 −417 89
3% 173 5 −347 −2716 254 83 58
7% −652 −84 −66 −119 76 1212 −591

58% 33 −80 53 18 219 47 196



Natural Question: How is the support size k

distributed for “random” m-by-n games?

Progress was made by

Goldman 1957 k=1
Thrall & Falk 1965 Small m, n
Faris & Maier 1987 Small m, n
Berg &Engel 1998 Asymptotics

Goldman’s result was that, for any reasonable

notion of randomness, k = 1 occurs with prob-

ability
m!n!

(m + n− 1)!
. For large m and n, Gold-

man’s quantity becomes very small.

Berg & Engel used remarkable statistical me-

chanics techniques to conjecture a formula valid

for matrices with any given shape but only in

the limit of large size.



Experimental data. I took experimental data
in the spirit of Thrall & Falk and Faris & Maier.
For example, from 1,000,000 different 5-by-7
games chosen with aij independent and nor-
mally distributed, I found support sizes dis-
tributed as

1 2 3 4 5
1.46% 18.26% 45.58% 30.22% 4.48%

1.46% compares well with Goldman’s proved
1/66 ∼= 1.51%.

Guessing a formula. I multiplied all the above
percentages by 66, obtaining

1 2 3 4 5
0.96 12.05 30.08 19.95 2.96

These are all within experimental error of be-
ing integers. The same phenomenon occurred
for all other small (m, n). From the ratio-
nal numbers obtained, I conjectured a gen-
eral Goldman-style formula. So, e.g., my for-
mula predicted that a random 5-by-7 game
would have support size four with probability
20/66 = 30.30%.



Finding the right notion of randomness.

My conjectured formula seemed roughly right

for many notions of randomness. But it was

likely to be exactly right for at most one notion

of randomness. Looking at Goldman’s proof

led me to choose the aij independently with

respect to the Cauchy density 1
π(x2+1)

rather

than the Gaussian density 1√
2π

e−x2/2.
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The two densities are qualitatively similar but

the Cauchy density has fatter tails.



Main result. With the right density, I suc-

ceeded in establishing my conjectured formula:

Theorem For Cauchy-random m-by-n zero-

sum matrix games, the chance that the sup-

port size is k is given by

m!

k!(m− k)!

n!

k!(n− k)!

(m− 1)!(n− 1)!

(m + n− 1)!
k.

Proof. The proof is a complicated induction.

It involves reducing multivariate integrals to

univariate integrals by using special properties

of the Cauchy density.

Very simple concluding principle. The theo-

rem implies that The support size k is approx-

imately normally distributed with mean
mn

m + n

and standard deviation
mn

(m + n)3/2
.


