
LIGHTLY RAMIFIED NUMBER FIELDS

WITH GALOIS GROUP S.M12.A

DAVID P. ROBERTS

Abstract. We specialize various three-point covers to find number fields with

Galois group M12, M12.2, 2.M12, or 2.M12.2 and light ramification in various

senses. One of our 2.M12.2 fields has the unusual property that it is ramified
only at the single prime 11.

1. Introduction

The Mathieu group M12 ⊂ S12 is the second smallest of the twenty-six sporadic
finite simple groups, having order 95,040 = 26 · 33 · 5 · 11. The outer automor-
phism group of M12 has order 2, and accordingly one has another interesting group
Aut(M12) = M12.2 ⊂ S24. The Schur multiplier ofM12 also has order 2, and one has

a third interesting group M̃12 = 2.M12 ⊂ S24. Combining these last two extensions
in the standard way, one gets a fourth interesting group M̃12.2 = 2.M12.2 ⊂ S48.

In this paper we consider various three-point covers, some of which have appeared
in the literature previously [12, 14, 15]. We specialize these three-point covers to
get number fields with Galois group one of the four groups S.M12.A just discussed.
Some of these number fields are unusually lightly ramified in various senses. Of
particular interest is a number field with Galois group M̃12.2 ramified only at the
single prime 11. Our general goal, captured by our title, it to get as good a sense
as currently possible of the most lightly ramified fields with Galois group S.M12.A
as above.

Section 2 provides some general background information. Section 3 introduces
the three-point covers that we use. Section 4 draws the dessins associated to these
covers so that the presence of M12 and its relation to M12.2 can be seen very
clearly. Section 5 describes the specialization procedure. Section 6 focuses on M12

and M12.2 and presents number fields with small root discriminant, small Galois
root discriminant, and small number of ramifying primes, These last three notions
are related but inequivalent interpretations of “lightly ramified.” Finally Section 7
presents some explicit lifts to M̃12 and M̃12.2.

We thank the Simons Foundation for partially supporting this work through
grant #209472.

2. General background

This section provides general background information to provide some context
for the rest of this paper.

2.1. Tabulating number fields. Let G ⊆ Sn be a transitive permutation group
of degree n, considered up to conjugation. Consider the set K(G) of isomorphism
classes of degree n number fields K with splitting field Kg having Galois group
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Gal(Kg/Q) equal to G. The inverse Galois problem is to prove that all K(G) are
non-empty. The general expectation is that all K(G) are infinite, except for the
special case K({e}) = {Q}.

To study fields K in K(G), it is natural to focus on their discriminants d(K) ∈ Z.
A fundamental reason to focus on discriminants is that the prime factorization∏
pep of |d(K)| measures by ep how much any given prime p ramifies in K. In a

less refined way, the size |d(K)| is a measure of the complexity of K. In this latter
context, to keep numbers small and facilitate comparison between one group and
another, it is generally better to work with the root discriminant δ(K) = |d(K)|1/n.

To study a given K(G) computationally, a methodical approach is to explicitly
identify the subset K(G,C) consisting of all fields with root discriminant at most
C for as large a cutoff C as possible. Often one restricts attentions to classes
of fields which are of particular interest, for example fields with |d(K)| a prime
power, or with |d(K)| divisible only by a prescribed set of small primes, or with
complex conjugation sitting in a prescribed conjugacy class c of G. All three of
these last conditions depend only on G as an abstract group, not on the given
permutation representation of G. In this spirit, it is natural to focus on the Galois
root discriminant ∆ of K, meaning the root discriminant of Kg. One has δ ≤ ∆.
To fully compute ∆, one needs to identify the inertia subgroups Ip ⊆ G and their
filtration by higher ramification groups.

Online tables associated to [8] and [9] provide a large amount of information on
low degree number fields. The tables for [8] focus on completeness results in all
the above settings, with almost all currently posted completeness results being in
degrees n ≤ 11. The tables for [9] cover many more groups as they contain at least
one field for almost every pair (G, c) in degrees n ≤ 19. For each (G, c), the field
with the smallest known δ is highlighted.

There is an increasing sequence of numbers C1(n) such thatK(G,C1(n)) is known
to be empty by discriminant bounds for all G ⊆ Sn. Similarly, if one assumes the
generalized Riemann hypothesis, there are larger numbers C2(n) for which one
knows K(G,C2(n)) is non-empty. In the limit of large n, these numbers tend to
4πeγ ≈ 22.3816 and 8πeγ ≈ 44.7632 respectively. This last constant especially
is useful as a reference point when considering root discriminants and Galois root
discriminants. See e.g. [13] for explicit instances of these numbers C1(n) and C2(n).

Via class field theory, identifying K(G,C) for any solvable G and any cutoff C
can be regarded as a computational problem. For G abelian, one has an explicit
description of K(G) in its entirety. For many non-abelian solvable G one can com-
pletely identify very large K(G,C). Identifying K(G,C) for nonsolvable groups is
also in principle a computational problem. However run times are prohibitive in
general and only for a very limited class of groups G have non-empty K(G,C) been
identified.

2.2. Pursuing number fields for larger groups. When producing complete
non-empty lists for a given G is currently infeasible, one would nonetheless like to
produce as many lightly ramified fields as possible. One can view this as a search for
best fields in K(G) in various senses. Here our focus is on smallest root discriminant
δ, smallest Galois root discriminant ∆, and smallest p among fields ramifying at a
single prime p.

For the twenty-six sporadic groups G in their smallest permutation representa-
tions, the situation is as follows. The set K(G) is known to be infinite for all groups
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except for the Mathieu group M23, where it is not even known to be non-empty [12].
One knows very little about ramification in these fields. Explicit polynomials are
known only for M11, M12, M22, and M24. The next smallest degrees come from the
Hall-Janko group HJ and Higman-Sims group HS, both in S100. The remaining
sporadic groups seem well beyond current reach in terms of explicit polynomials
because of their large degrees.

For M11, M12, M22, and M24, one knows infinitely many number fields, by
specialization from a small number of parametrized families. In terms of known
lightly ramified fields, the situation is different for each of these four groups. The
known M11 fields come from specializations of M12 families satisfying certain strong
conditions and so instances with small discriminant are relatively rare. On [9], the
current records for smallest root discriminant are give by the polynomials

f11(x) = x11 + 2x10 − 5x9 + 50x8 + 70x7 − 232x6 + 796x5 + 1400x4

−5075x3 + 10950x2 + 2805x− 90,

f12(x) = x12 − 12x10 + 8x9 + 21x8 − 36x7 + 192x6 − 240x5 − 84x4

+68x3 − 72x2 + 48x+ 5.

The respective root discriminants are

δ11 = (21838518)1/11 ≈ 96.2,
δ12 = (224312294)1/12 ≈ 36.9.

Galois root discriminants are much harder to compute in general, with the general
method being sketched in [7]. The interactive website [6] greatly facilitates GRD
computations, as indeed in favorable cases it computes GRDs automatically. In the
two current cases the GRDs are respectively

∆11 = 213/637/8539/20 ≈ 270.8
∆12 = 243/16325/18291/2 ≈ 159.4.

The ratios 96.2/36.8 ≈ 2.6 and 270.8/159.5 ≈ 1.7 are large already, especially
considering the fact that M12 is twelve times as large as M11. But, moreover, the
sequence of known root discriminants increases much more rapidly for M11 than it
does for M12. There is one known family each for M22 [10] and M24 [5, 17]. The
M22 family gives some specializations with root discriminant of order of magnitude
similar to those above. The M24 family seems to give fields only of considerably
larger root discriminant.

In this paper we focus not especially on M12 itself, but more so on its extension
M12.2, for which more good families are available. On the one hand, we go much
further than one can at present for any other extension G.A of a sporadic simple
group. On the other hand, we expect that there are many M12 and M12.2 fields of
comparably light ramification that are not accessible by our approach.

2.3. M12 and related groups. To carry out our exploration, we freely use group-
theoretical facts about M12 and its extensions. Generators of M12 and M12.2 are
given pictorially in Section 4 and lifts of these generators to M̃12 and M̃12.2 are
discussed in Section 7. The Atlas [3] as always provides a concise reference for
group-theoretic facts. Several sections of [4] provide further useful background
information, making the very beautiful nature of M12 clear. To get a first sense
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C |C| freq λ12 λt12 λ24 λt24 §7.3 §7.4
1A 1 1/190080 112 112 124 124 1 0
1A 1 1/190080 112 112 212 212 0 1
2A 792 1/240 26 26 46 46 768 789
2B 495 1/384 2414 2414 212 212 470 503
2B 495 1/384 2414 2414 2818 2818 521 515
3A 1760 1/108 3313 3313 3616 3616 1735 1776
3A 1760 1/108 3313 3313 6323 6323 1823 1781
3B 2640 1/72 34 34 38 38 2702 2578
3B 2640 1/72 34 34 64 64 2649 2510
4A 5940 1/32 4222 4214 4424 442214 6002

11992
4B 5940 1/32 4214 4222 442214 4424 5993
5A 9504 1/20 5212 5212 5414 5414 9329 9415
5A 9504 1/20 5212 5212 10222 10222 9405 9613
6A 15840 1/12 62 62 122 122 15798 15819
6B 15840 1/12 6321 6321 62322212 62322212 15863 15590
6B 15840 1/12 6321 6321 6323 6323 15881 15828
8A 23760 1/8 84 8212 8242 824 212 23613

47707
8B 23760 1/8 8212 84 824 212 8242 24022
10A 19008 1/10 (10)2 102 (20)4 (20)4 19048 18965
11AB 17280 1/11 (11)1 (11)1 11212 11212 17031 17308
11AB 17280 1/11 (11)1 (11)1 (22)2 (22)2 17425 17194
2C 1584 1/120 212 224 1650
4C 7920 1/24 4424 4828 7964
4D 15840 1/12 46 86 15688
6C 31680 1/6 64 68 31651
10BC 38016 1/5 10222 10424 38245
12A 31680 1/6 122 242 31577
12BC 63360 1/3 12 6 4 2 122624222 63493

Table 2.1. First seven columns: information on conjugacy
classes of S.M12.A and their sizes. Last two columns: distribu-
tion of factorization partitions (λ12, λ

t
12, λ24, λ

t
24) of polynomials

(fB , fBt , f̃B , f̃Bt) from §7.3; distribution of factorization partitions

(λ12λ
t
12, λ24λ

t
24) of polynomials (fD2, f̃D2) from §7.4

of M12 and its extensions, a understanding of conjugacy classes and their sizes is
particularly useful, and information is given in Table 2.1.

To assist in reading Table 2.1, note that M12 has fifteen conjugacy classes, 1A,
. . . , 10A, 11A, 11B in Atlas notation. All classes are rational except for 11A
and 11B which are conjugate over Q(

√
−11). Three pairs of these classes be-

come one class in M12.2, the new merged classes being 4AB, 8AB, and 11AB.
Also there are nine entirely new classes in M12.2, all rational except for the Ga-
lois orbits {10B, 10C} and {12B, 12C}. The cover M̃12 has 26 conjugacy classes,
with all classes rational except for the Galois orbits {8A1′, 8A1′′}, {8B1′, 8B1′′},
{10A2′, 10A2′′}, {11A1, 11B1}, {11A2, 11B2}. The 21 Galois orbits correspond to

the 21 lines of Table 2.1 above the dividing line. Finally M̃12.2 has 34 conjugacy
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classes, 20 coming from the 26 conjugacy classes of M̃12 and fourteen new ones.
The seven lines below the divider give a quotient set of these new fourteen classes;
the lines respectively correspond to 1, 2, 2, 1, 2, 2, and 4 classes.

The columns λ12, λt12, λ24, λt24 contain partitions of 12, 12, 24, and 24 respec-
tively. It is through these partitions that we see conjugacy classes in S.M12.A,
either via cycle partitions of permutations or degree partitions of factorizations
of polynomials into irreducibles in Fp[x]. For M12, the partition λ12 corresponds
to the given permutation representation while λt12 corresponds to the twin degree

twelve permutation as explained in §2.4 below. Similarly for M̃12, one has λ24 cor-
responding to the given permutation representation and λt24 corresponding to its

twin. For M12.2 one has only the partition λ12λ
t
12 of 24, For M̃24.2, one likewise

has only the partition λ24λ
t
24 of 48.

The existence of the biextension 2.M12.2 is part of the exceptional nature of M12.
In fact, the outer automorphism group of Mn has order 2 for n ∈ {12, 22} and has
order 1 for the other possibililities, n ∈ {11, 23, 24}. Similarly, the Schur multiplier
of M12 and M22 has order 2 and 12 respectively, and order 1 for the other Mn. The
rest of this section consists of general comments, illustrated by contrasting 2.M12.2
with 2.M22.2.

2.4. G compared with G.2. For a group G ⊆ Sn and a larger group G.2, there
are two possibilities: either the inclusion can be extened to G.2 or it can not. In
the latter case, certainly G.2 embeds in S2n, although it might also embed in a
smaller Sm, as is the case for e.g. S6.2 ⊂ S10.

The extension M22.2 embeds in S22 while M12.2 only first embeds in S24. The
fact that M12.2 does not have a smaller permutation representation perhaps is a
reason for its relative lack of presence in the explicit literature on the inverse Galois
problem.

When G.2 does not embed in Sn, there is an associated twinning phenomenon:
fields in K(G) come in twin pairs, with two twins K1 and K2 sharing a common
splitting field Kg. When the outer automorphism group acts non-trivially on the
set of conjugacy classes of G, then twin fields K1 and K2 do not necessarily have
to have the same discriminant; this is the case for M12.

2.5. G compared with G̃. For a group G ⊆ Sn and a double cover G̃, finding
the smallest N for which G̃ embeds in SN can require an exhaustive analysis of
subgroups. One needs to find a subgroup H of G of smallest possible index N which
splits in G̃ in the sense that there is a group Ĥ in G̃ which maps bijectively to H.
The subgroup H also needs to satisfy the condition that its intersection with all its
conjugates in G is trivial.

In the case of G = An and G̃ = Ãn, the Schur double cover, the desired N is
typically much larger than n. Similarly M̃22 first embeds in S352 and M̃22.2 first
embeds in S660. The fact that one has the low degree embeddings M̃12 ⊂ S24

and M̃12.2 ⊂ S48 greatly facilitates the study of K(M̃12) and K(M̃12.2) via explicit

polynomials. These embeddings arise from the fact that M11 splits in M̃12.

2.6. The nonstandard double extension (2.M12.2)∗. There is a second non-
split double cover (2.M12.2)∗ of M12.2. We refer to the group 2.M12.2 we are
working with throughout this paper as the standard double cover, since the ATLAS
[3] prints its character table. The isoclinic [3, §6.7] variant (2.M12.2)∗ is considered
briefly in [2], where the embedding (2.M12.2)∗ ⊂ S48 is also discussed.
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Elements of 2.M12.2 above elements in the class 2C ⊂ M12.2 have cycle type
224, as stated on Table 2.1. In contrast, elements in (2.M12.2)∗ above elements in
2C have cycle type 412. This different behavior plays an important role in §7.1.

3. Three-point covers

3.1. Six partition triples. Suppose given three conjugacy classes C0, C1, C∞
in a centerless group M ⊆ Sn. Suppose each of the Ct is rational in the sense
that whenever g ∈ Ct and gk has the same order as g, then gk ∈ Ct too. Sup-
pose that the triple (C0, C1, C∞) is rigid in the sense that there exists a unique-
up-to-simultaneous-conjugation triple (g0, g1, g∞) with gt ∈ Ct, g0g1g∞ = e, and
〈g0, g1, g∞〉 = M . Then the theory of three-point covers applies in its simplest form:
there exists a canonically defined cover degree n cover X of P1, ramified only above
the three points 0, 1, and ∞, with local monodromy class Ct about t ∈ {0, 1,∞}
and global monodromy M . Moreover, this cover is defined over Q and the set S at
which it has bad reduction satisfies

Sloc ⊆ S ⊆ Sglob.

Here Sloc is the set of primes dividing the order of one of the elements in a Ct,
while Sglob is the set of primes dividing |M |.

An interesting fact about the Mn is that they contain no rational rigid triples
(C0, C1, C∞). Accordingly, we will not be using the theory of three-point covers in
its very simplest form. Instead, for each of our M12 covers there is a complication,
always involving the number 2, but in different ways. We will not be formal about
how the general theory needs to be modified, as our computations are standard,
and all we need is the explicit equations that we display below to proceed with our
construction of number fields.

We use the language of partition triples rather than class triples. The only
essential difference is that the two conjugacy classes 11A and 11B give rise to the
same partition of twelve, namely (11)1. The six partition triples we use are listed
in Table 3.1. As we will see by direct computation, the sets S of bad reduction
are always of the form {2, 3, q}, thus strictly smaller than Sglob = {2, 3, 5, 11}. The
extra prime q is 5 for Covers A, B, and Bt, while it is 11 for Covers C, D, and E.

Name λ0 λ1 λ∞ M12 M12.2 M̃12 M̃12.2 2 3 5 11
A 3333 22221111 (10)2

√
W U T

B 441111 441111 (10)2
√ √

U U T
Bt 4422 4422 (10)2

√ √
U U T

C 333111 222222 (11)1
√ √

U U T
D 3333 22221111 (11)1

√ √
U U T

E 333111 333111 66
√ √

W T U

Table 3.1. Left: The six dodecic partition triples pursued in this
paper. Middle: The Galois groups G they give rise to. Right: The
primes of bad reduction and their least ramified behavior (Unram-
ified, Tame, Wild) for specializations, according to Tables 5.2 and
5.3.
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3.2. Cover A. Cover A was studied by Matzat [14] in one of the first computational
successes of the theory of three-point covers. The complication here is that there
are two conjugacy classes of (g0, g1, g∞). It turns out that they are conjugate to
each other over Q(

√
−5). Abbreviating a =

√
−5, one finds an equation for this

cover to be

fA(t, x) = 53
(
24ax2 + 16ax− 648a− x4 − 60x3 − 870x2 − 220x+ 6399

)3
−212315(118a− 475)tx2.

To remove irrationalities, we define

fA2(t, x) = fA(t, x)fA(t, x),

where · indicates conjugation on coefficients. Because all cuspidal partitions in-
volved are stable under twinning, the generic Galois group of fA2(t, x) is M12.2,
not the M2

12.2 one might expect from similar situations in which quadratic irra-
tionalities are removed in the same fashion.

3.3. Covers B and Bt. Cover B is the most well-known of the covers in this paper,
having been introduced by Matzat and Zeh-Marschke [15] and studied further in the
context of lifting by Bayer, Llorente, and Vila [1] and Mestre [16]. The complication
from Cover A of there being two classes of (g0, g1, g∞) is present here too. However,
in this case, the complication can be addressed without introducing irrationalities.
Instead one uses λ0 = λ1 and twists accordingly. An equation is then

fB(s, x) = 3x12 + 100x11 + 1350x10 + 9300x9 + 32925x8 + 45000x7 − 43500x6

−147000x5 + 46125x4 + 172500x3 − 16250x2 + 22500x+ 1875

−s21152x2.

The twisting is seen in the polynomial discriminant, which is

DB(s) = 21443120538(s2 − 5).

So here and for Bt below, the three critical values of the cover are −
√

5,
√

5, and
∞. The three critical values of Covers A, C, D, and E are all at their standard
positions 0, 1, and ∞.

While the outer automorphism of M12 fixes the conjugacy class 10A = (10)2, it
switches the classes 4B = 441111 and 4A = 4422. Therefore Cover Bt, the twin
of Cover B, has ramification triple (4422, 4422, (10)2) and hence genus two. While
the other five covers have genus zero and were easy to compute directly, it would
be difficult to compute Cover Bt directly. Instead we started from B and applied
resolvent constructions, eventually ending at the following polynomial:

fBt(s, x) = 52
(
2500x12 − 45000x10 + 310500x8 − 1001700x6 + 1433700x4

−641520x2 + 174960x+ 88209
)

−270s(12x+ 25)
(
50x6 − 450x4 + 1080x2 − 297

)
+36s2(12x− 25)2.

Unlike in our equations for Covers A, B, C, and D, here x is not a coordinate
on the covering curve. Instead the covering curve is a desingularization of the
plane curve given by fBt(s, x) = 0. The function x has degree two and there is a
degree 5 function y so that the curve can be presented in the more standard form
y2 = 15x

(
5x4 + 30x3 + 51x2 − 45

)
.
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3.4. Covers C and D. The next two covers are remarkably similar to each other
and we treat them simultaneously. In these cases, the underlying permutation
triple is rigid. However it is not rational, since 11A and 11B are conjugates are
one another over Q(

√
−11). So as for Cover A, there is an irrationality in our

final polynomials, although this time we knew before computing that the field of
definition would be Q(

√
−11). Abbreviating u =

√
−11, our polynomials are

fC(t, x) =
(
21ux+ 13u− 2x3 − 54x2 − 321x− 83

)3
·
(
69ux+ 1573u− 2x3 − 102x2 − 1713x− 10043

)
+t29312(253u+ 67)tx,

fD(t, x) = −112u
(
1188ux3 + 198ux2 − 1346ux− 27u+ 594x4

−7920x2 − 1474x+ 135
)3

−28313(253u− 67)tx.

As with Cover A, we remove irrationalities by forming fC2(t, x) = fC(t, x)fC(t, x)
and fD2(t, x) = fD(t, x)fD(t, x). As for fA2(t, x), the Galois group of these new
polynomials is M12.2.

3.5. Cover E. One complication for Cover E is the same as for Covers A, B, and
Bt: there are two classes of underlying (g0, g1, g∞). As for B and Bt, the classes
C0 and C1 agree, which can be exploited by twisting to obtain rationality. But
now, unlike for B and Bt, this class, namely 3A, is stable under twinning. So now,
replacing the twin pair (XB , XBt), there is a single curve XE with a self-twinning
involution. Like XB , this curve has genus zero and is defined over Q. However, a
substantial complication arises only here: the curve XE does not have a rational
point and is hence not parametrizable.

We have computed a corresponding degree twelve polynomial fE(s, x) and used
it to determine a degree twenty-four polynomial

fE2(t, x) =

(1− t)
(
x6 − 20x5 + 262x4 − 15286x3 + 477665x2 − 10170814x+ 96944940

)3(
x6 + 60x5 + 2406x4 + 56114x3 + 1941921x2 + 55625130x+ 996578748

)
+t
(
x12 + 396x10 − 27192x9 + 933174x8 − 20101752x7 + 169737744x6

−16330240872x5 + 538400028969x4 − 8234002812376x3

+195276967064388x2 − 3991355037576144x+ 30911476378259268
)2

+243121122t(t− 1).

One recovers fE(s, x) via fE2(1 +s2/11, x) = fE(s, x)fE(−s, x). The discriminants
of fE(s, x) and fE2(t, x) are respectively

DE(s) = 2643481160(s2 + 11)6c4(s)2,

DE2(t) = 2224316811264t12(t− 1)12c10(t).2

The last factors in each case have the indicated degree and do not contribute to
field discriminants. The Galois group of fE(s, x) over Q(s) is M12 and fE(−s, x)
gives the twin M12 extension. The Galois group of fE2(t, x) over Q(t) is M12.2.
The .2 corresponds to the double cover of the t-line given by z2 = 11(t− 1).



LIGHTLY RAMIFIED NUMBER FIELDS WITH GALOIS GROUP S.M12.A 9

The equation fE2(t, x) = 0 gives the genus zero degree twenty-four cover XE2 of
the t-line known to exist by [12, Prop. 9.1a]. The curve XE2 is just another name
for the curve XE discussed above. It does not have any points over R or over Q2.
The function x has degree 2, and there is a second function y so that XE2 = XE is
given by y2 = −x2 + 40x− 404.

4. Dessins and generators

Figure 4.1 draws pictures corresponding to Covers A, B, and Bt while Figure 4.2
draws pictures corresponding to Covers C, D, and E. In this section, we describe
the figures and how they give rise to generators of M12 and M12.2. To avoid clutter,
the twelve edges are not labeled in the figures. To follow the discussion, the reader
needs to label the edges by 1, . . . , 12, in a way consistent with the text.

4.1. Covers A, C, and D. For L = A, C, or D, the corresponding figure draws
the roots of fL(0, x) as black dots and the roots of fL(1, x) as white dots. As t
moves from 0 to 1, the roots of fL(t, x) sweep out the twelve edges of the figure.
All together, the drawn bipartite graph, viewed as a subset of the Riemann sphere
XL(C), is the dessin of Cover L.

Let T (C) = C − {0, 1}. Let ? = 1/2 ∈ T . Then the fundamental group
π1(T (C), ?) is the free group 〈γ0, γ1〉 where γk is the counterclockwise circle of radius
1/2 about k. One has a natural extension π1(T (C)R, ?) obtained from π1(T (C), ?)
by adjoining a complex conjugation operator σ satisfying the involutory relation
σ2 = 1 and the intertwining relations σm0 = m−10 σ, and σm1 = m−11 σ.

For each L, in conformity with the general theory of dessins, we have a homo-
morphism ρL from π1(T (C), ?) into the group of permutations of the twelve edges.
Always the image is M12. Again in conformity with the general theory, ρL(γ0)
is the minimal counterclockwise rotation about the black dots while ρL(γ1) is the
minimal counterclockwise rotation about the white dots.

Covers A, C, and D behave very similarly. Taking Cover D as an example, and
indexing edges in the figure roughly from left to right, one has

ρD(γ0) = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12),

ρD(γ1) = (3, 4)(5, 7)(8, 10)(11, 12).

In the cases of A, C, and D, the twin permutation is easily visualized as follows.
Consider the complex conjugates of the dessins, obtained by flipping the drawn
pictures upside down. In the new pictures, the image of edge e is denoted e. Then
we can apply the general theory again. In the case of Cover D the result is

ρtD(γ0) = (3, 2, 1)(6, 5, 4)(9, 7, 6)(12, 11, 10),

ρtD(γ1) = (3, 4)(5, 7)(8, 10)(11, 12).

In other words, if one identifies the twelve e with their corresponding e, one has
ρD(γ0) = ρtD(γ0)−1 and ρD(γ1) = ρtD(γ1). The same relations hold with D replaced
by A or C.

The permutation representations ρL and ρtL are extraordinarily similar to each
other in our three cases L = A, C, and D. Continuing with our example of Case
D, considers words w of length ≤ 14 in γ0 and γ1. Then 339 different permutations
arise as ρD(w). For each one of them, the cycle type of ρD(w) and the cycle type
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A

B

Bt

Figure 4.1. Dessins for Covers A, B, and Bt. For Covers A and
B, the ambient surface is the plane of the page; for Cover Bt it is
a genus two double cover of the plane of the page.

of ρtD(w) agree. Only for words of length 15 does one first get a disagreement:

ρD(γ20γ1γ0γ1γ0γ1γ
2
0γ1γ0γ1γ

2
0γ1) = (1, 8, 6, 5)(4, 9, 7, 11)(2)(3)(10)(12),

ρtD(γ20γ1γ0γ1γ0γ1γ
2
0γ1γ0γ1γ

2
0γ1) = (2, 11, 10, 6)(3, 4, 8, 9)(1, 5)(7, 12).

Only for words of length 18 does one first get the other possible disagreement with
ρD(w) and ρtD(w) having different cycle types, one 84 and the other 8212.

Reinterpreting, one immediately gets homomorphisms ρL2 : π1(T (C)R, ?)→ S24

with image M12.2. Namely the twenty-four element set is {1, . . . , 12}∪ {1, . . . , 12}.
The element ρL2(σ) acts by interchanging each e with its e. For k ∈ {0, 1} one has
ρL2(γk) = ρL(γk)ρtL(γk).

4.2. Covers B and Bt. Inside the Riemann sphere XB(C), we use black dots to

represent roots of fB(−
√

5, x) and white dots to represent roots of fB(
√

5, x). The
twelve edges then correspond to the twelve preimages in the x-line of the interval
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C

D

E

Figure 4.2. Dessins for Covers C, D, and E. For C and D, the
rightmost black and white vertices, of valence 3 and 2 respectively,
are not drawn, so as not to obscure the small loop to the right.
For Covers C and D, the ambient surface is the plane of the page;
for Cover E it is a genus zero double cover of the plane of the page.

(−
√

5,
√

5). Now we have monodromy operators m± = m±
√
5 and a complex con-

jugation σ as before. From the picture, indexing edges roughly from left to right
again, one immediately has

ρB(m−) = (1, 2, 4, 3)(7, 9, 8, 10)(5)(6)(11)(12),

ρB(m+) = (4, 5, 7, 6)(9, 11, 12, 10)(1)(2)(3)(8),

ρB(σ) = (2, 3)(5, 6)(9, 10)(11, 12)(1)(4)(7)(8).

The fact that Cover B is defined over R corresponds to ρB(σ) already being in M12.
There are complications with presenting the twin case Bt visually, since XBt has

genus two. If we drew things using the x-variable, we would have four black dots
and four white dots, all distinct in the x-plane. An advantage of this presentation
would be that complex conjugation would be represented by the standard flip; this
flip would fix exactly two of the black dots and all four of the white dots. A
disadvantage would be that some edges would be right on top of other edges, and
some edges would fold back on themselves.

Instead, we perturb things slightly, using the y-variable of §3.3, introducing the
new variable z = x + iy/200, and drawing the dessin instead in the z plane. Now
monodromy operators ρBt(m−) and ρBt(m+) can be easily read off the picture.
Even ρBt(σ) = (2, 3)(7, 8)(9, 10)(11, 12) can be clearly read off, the deformed version
of the real axis through all four white dots being easily imagined.

4.3. Cover E. Inside the sphere XE(C), we draw the roots of fE(−
√
−11, x) as

black dots and the roots of fE(
√
−11, x) as white dots. As s moves upward from
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−
√
−11 to

√
−11, the twelve roots of fE(s, x) sweep out the twelve drawn edges.

We work now with monodromy operators m± = m±
√
−11. Because the ramification

points ±
√
−11 are no longer real, complex conjugation now satisfies σm− = m−1+ σ

and σm+ = m−1− σ.
The changes do not obstruct our basic procedure. From the picture we have

ρE(m+) = ρtE(m−) = (3, 4, 5)(6, 7, 8)(10, 11, 12),

ρE(m−) = ρtE(m+) = (10, 9, 8)(5, 6, 7)(1, 2, 3).

In this case, as just indicated, the twin representation is obtained by reversing the
roles of the black and white dots. For the monodromy representation and its twin,
complex conjugation acts by subtraction from 13 on indices: ρE(σ) = ρtE(σ) =
(1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7).

The degree 24 dessin corresponding to fE2(t, x) can be easily imagined from our
drawn degree 12 dessin corresponding to fE(s, x). Namely, one first views both
white dots and black dots as associated to the number t = 0. Then one adds say
a cross at the appropriate midpoint ε of each edge e, viewing these twelve crosses
as associated to the number t = 1. Any old edge e now splits into two edges εb
and εw, with εb incident on a black vertex and εw incident on a white vertex. The
monodromy operator about zero is then

ρE2(m0)=(3b, 4b, 5b)(6b, 7b, 8b)(10b, 11b, 12b)(10w, 9w, 8w)(5w, 6w, 7w)(1w, 2w, 3w).

The operator ρE2(m1) acts by switching each εb and εw while the complex conju-
gation operator ρE2(σ) acts by switching εc and (13− ε)c for either color c.

5. Specialization

This section still focuses on covers, but begins the process of passing from covers
to number fields. The next two sections are also focused on specialization, but with
the emphasis shifted to the number fields produced.

5.1. Keeping ramification within {2, 3, q}. Let f(t, x) ∈ Z[t, x] define a cover
ramified only above the points 0, 1, and ∞ on the t-line. Then for each τ ∈
T (Q) = Q − {0, 1}, one has an associated number algebra Kτ . When f(τ, x) is
separable, which it is for all our covers and all τ , this number algebra is simply Kτ =
Q[x]/f(τ, x). Thus “specialization” in our context refers essentially to plugging in
the constant τ for the variable t.

Local behavior. To analyze ramification in Q[x]/f(τ, x), one works prime-by-prime.
The procedure is described methodically in [20, §3,4] and we review it in briefer
and more informal language here. For a given prime p, one puts T (Q) in the larger
set T (Qp) = Qp − {0, 1}. One thinks of T (Qp) as consisting of a generic “center”
and three “arms,” one extending to each of the cusps 0, 1, and ∞. A point τ is
in arm k ∈ {0, 1,∞} if τ reduces to k modulo p. Otherwise, τ is generic. If τ
is in arm k, then one has its extremality index j ∈ Z≥1, defined by j = ordp(τ),
j = ordp(τ − 1), and j = − ordp(τ) for k = 0, 1, and ∞ respectively.

Suppose a prime p is not in the bad reduction set of f(t, x). Then the analysis
of p-adic ramification in any Kτ is very simple. First, if τ is generic, then p is
unramified in Kτ . Second, suppose τ is in arm k with extremality index j; then the
p-inertial subgroup of the Galois group of Kτ is conjugate to gjk, where gk ∈ Ck is
the local monodromy transformation about the cusp k. In particular, suppose gk
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has order mk; then a point τ on the arm k yields a Kτ unramified at p if and only
if its extremality index is a multiple of mk.

Global specialization sets. Let S be the set of bad reduction primes of f(t, x), thus
{2, 3, q} for us with q = 5 for Covers A, B, and Bt and q = 11 for Covers C, D,
and E. Then the subset of T (Q) consisting of τ giving Kτ ramified only within S
depends only on S and the monodromy orders m0, m1, and m∞. Following [20] still,
we denote it Tm0,m1,m∞(ZS). This set can be simply described without reference to
p-adic numbers as follows. It consists of all τ = −axp/czr where (a, b, c, x, y, z) are
integers satisfying the ABC equation axp + byq + czr = 0 with a, b, and c divisible
only by primes in S. After suitable simple normalization conditions are imposed,
the integers a, b, c, x, y, and z are all completely determined by τ .

To find elements in some Tm0,m1,m∞(ZS) one can carry out a computer search,
restricting to |axp| and |czr| less than a certain height cutoff, say of the form 10u.
As one increases u, the new τ found rapidly become more sparse. Many of the new
τ are not entirely new, as they are often base-changes of lower-height τ as described
in [20, §4]. A typical situation, present for us here, is that one can be confident
that one has found at least most of Tm0,m1,m∞(ZS) by a short implementation of
this process.

A2: |T 5
3,2,10| = 447, 1584703213 − 19949042023912 + 21034511910 = 0

B,Bt: |T 5
(4,4),10| = 27, 794 − 68812 + 28385 = 0

C2,D2: |T 11
3,2,11| = 394, 25408333 − 40500855832 + 21831116 = 0

E2: |T 11
3,2,12| = 395, 7965315853 − 224812045319032 + 211351121712 = 0

Table 5.1. Sizes and largest height elements of specialization sets

The sizes of our specialization sets T qm0,m1,m∞
⊆ Tm0,m1,m∞(Z{2,3,q}) are given

by the left columns of Table 5.1. The right columns give the ABC triple corre-
sponding to the element τ of largest height in these sets. The set T 5

(4,4),10 is not

in our standard form. We obtain it by considering a set T 5
4,2,10 of 237 points. We

select from this set the τ for which 5(1− τ) is a perfect square. Each of these gives

two specialization points σ = ±
√

5(1− τ) in T(4,4),10 and then we consider σ = 0

as in T 5
(4,4),10 as well. The displayed ABC triple yields σ = ±6881/2434.

5.2. Analyzing 2-, 3-, and q-adic ramification. Let p ∈ {2, 3, q}. Then the
quantity ordp(disc(Kτ )) is a locally constant function on T (Qp). It shares some
basic features with the much simpler tame case of ordp(disc(Kτ )) for p 6∈ {2, 3, q}.
For example, it is ultimately periodic near each of the cusps. However there are
no strong general theorems to apply in this situation, and the current best way to
proceed is computationally.

Each entry on Tables 5.2 and 5.3 gives a value of ordp(Kτ ) for the indicated cover
and for τ in the indicated region. The entries in the far left column correspond to
the generic region. The entries in the main part of the table correspond to the
regions of the arms.

For example, consider Cover A2 for p = 2 and focus on the ∞-arm. This case
is relatively complicated, as the table has three lines giving entries corresponding
to extremalities 1-10 on the first line, 11-20 on the second, and 21 on the third. A



14 DAVID P. ROBERTS

gen τ 1 2 3 4 5 6 7 8 9 10

2 0 (68) Cover A2
1 62 (50)
∞ 72 {46, 52} 66 {46, 48} 64 42 60 {40, 42} 52 42

54 (36 52 40 52 40 48 40 52 40
52)

3 0 52 {40, 48} (36 48 48)
1 {40, 44} 36 24 (20)
∞ 52 48 24 42 38 22 32 34 22 30

24 22 22 22 (0 20 16 20 16 12

5 0 34 26 (20 12 20)
1 34 26 (18)

26, 18∞ (42 42 42 42 26)

2 0 ({18, 20, 24}) Cover B
1 (34)
∞ {16, 22} 30 {16, 22} 30 {12, 18} 28 {12, 16} 24 {12, 18} 24

({0, 12} 22 {8, 16} 22 {8, 16} 18 {8, 16} 22 {8, 16} 22)

3 ∞ 16 16 10 14 12 10 10 (10 0 10
8, 10 8 10 8 6 8 10 8)

5 0 14 (8)
18 ∞ (10 {6, 10} 20 18 20 18 {8, 12} 18 20 18)

Table 5.2. Specialization tables for Covers A2 and B.

sample entry is {46, 52}, corresponding to extremality j = 2. This means first of
all that ord2(Kτ ) can be both 46 and 52 in this region. It means moreover that
our computations strongly suggest that no other values of ord2(Kτ ) can occur.
The parentheses indicate the experimentally-determined periodicity. Thus from
the table, ord2(Kτ ) = 36 is the only possibility for extremality 12, and it is likewise
the only possibility for extremalities 12 + 11k. We have no need of rigorously
confirming the correctness of these tables, as they serve only as a guide for us
in our search for lightly ramified number fields. Rigorous confirmations would
involve computations which can be highly detailed for some regions. Examples of
interesting such computations are in [19].

5.3. Field equivalence. A typical situation is that f(τ, x) is ireducible but has
large coefficients. Starting in the next subsection, we apply Pari’s command polred-
abs [18] or some other procedure to obtain a polynomial φ(x) with smaller coef-
ficients defining the same field. In general we say that two polynomials f and
φ in Q[x] are field equivalent, and write f ≈ φ, if Q[x]/f(x) and Q[x]/φ(x) are
isomorphic.

5.4. Specialization points with a Galois group drop. We now shift to explic-
itly indicating the source cover in the notation, writing K(L, τ) rather than Kτ , as
we will be often be considering various covers at once. Only a few of our algebras
K(L, τ) have Galois group different from M12 or M12.2. We present these degener-
ate cases here, before moving on to our main topic of non-degenerate specialization
in the next section.
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gen τ 1 2 3 4 5 6 7 8 9 10

Cover C2
2 0 48 {12, 24} 36 24 24 (0 20 20)

1 36 (36 48)
∞ 48 {12, 24} 36 24 24 0 20 20 20 20

20 20 20 20 20 20)

3 0 {32, 36} (36 {20, 24} 36)
1 34 22 (20 16)

24 ∞ 42 38 {18, 22} 32 34 22 30 24 (22 22
22 0 22 22 22 22 22 22 22)

11 0 36 28 (20 20 16)
1 32 (22)

24 ∞ (44 44 44 44 44 44 44 44 44 44
24)

Cover D2
2 0 40 {16, 24} 24 24 24 (0 20 20)

1 24 (24 32)
∞ 40 {16, 24} 24 24 24 (0 20 20 20 20

20 20 20 20 20 20)

3 0 52 {40, 48} (36 48 48)
1 {40, 44} 36 24 (20)

36, 20 ∞ 52 48 24 42 38 22 32 34 22 30
24 22 22 22 (0 20 20 20 20 20
20 20 20 20 20)

11 0 36 28 (22 22 18)
1 32 (20)

24 ∞ (44 44 44 44 44 44 44 44 44 44
24)

2 0 66 40 52 {24, 32} 36 32 32 (16 24 24)
1 66 ({44, 48}) Cover E2
∞ 70 (a 74 b 72 b 74 a 74 b

72 b 74)

3 0 48 {32, 40} 32 (40 40 32)
1 48 {32, 36} 32 (24 28)

24, 20 ∞ 56 52 32 48 48 (24, 8 46 44 30 40
46 28 46 40 30 44 46)

11 0 36 28 (20 20 16)
1 32 24 (16 20)

36, 24 ∞ 40 40 36 36 32 32 28 28 24 24
(0 22 20 18 16 22 12 22 16 18
20 22)

Table 5.3. Specialization tables for Covers C2, D2 and E2, with
a = {24, 36, 48} and b = {32, 40, 52} in the case of Cover E2.

For B and Bt, our specialization set T 5
(4,4),10 has twenty-seven points. Three of

them yield a group drop as in Table 5.4. In this table, and also Tables 5.5, 6.1,
6.2, we present an analysis of ramification using the notation of [6] and making use
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Basic p-adic invariants Slope Content
Cover τ Fact G 2 3 5 2 3 5 RD GRD

B,Bt -5/2 12 L2(11) 628 11101 10132 [2]23 [ ]511 [ 3
2
]2 41.2 55.4

B
1

11 1 M11 610481 1 8721 1 1 59 59 1 1
[ 8
3
, 8
3
]23 [ ]28 [ 9

4
]4

96.2
270.8

Bt 12 M t
11 610 48 2 87 43 1019 21 103.3

B
-11/5

12 M t
11 610 48 2 11101 1019 2

[ 8
3
, 8
3
]23 [ ]511 [ 9

4
]4

103.3
281.2

Bt 11 1 M11 610 48 1 1 1110 1 95 95 1 1 117.5

Table 5.4. Description of Kτ and Kt
τ for the three τ in X5

(4,4),10

for which the Galois group is smaller than M12

of the associated website repeatedly in the calculations. A p-adic field with degree
n = fe, residual degree f , ramification index e, and discriminant pfc is presented
as efc . Superscripts f = 1 are omitted. Likewise subscripts c = e−1, corresponding
to tame ramification, are omitted. Slope contents, as in [2]23, []511, and [3/2]2 on the
first line, indicate decomposition groups and their natural filtration. This first field
is tame at 3 with inertia group of size 11 and thus a contribution of 310/11 to the
GRD. It is wild at 2 and 5 with inertia groups of sizes 6 and 10 and contributions
24/3 and 513/10 to the GRD respectively. The Galois root discriminant, as printed,
is 24/3310/11513/10 ≈ 55.4.

Continuing to discuss Table 5.4, the specialization point τ = −5/2 yields the
same field in both B and Bt, with group L2(11) = PSL2(F11) of order 660. A
defining equation is

fB(−5/2, x) ≈ x12 − 2x11 − 9x10 + 60x8 + 42x7 + 141x6 + 162x5 + 150x4

+60x3 + 141x2 + 18x+ 21.

The field K(B,−5/2) is very lightly ramified, comparable with the remarkable

dodecic L2(11) field on [9] with GRD = RD =
√

1831 ≈ 42.8. For the specialization
point τ = 1, Cover B yields a polynomial factorizing as 11 + 1 while Bt yields an
irreducible polynomial. For the point τ = −11/5 the situation is reversed. Again
these fields are among the very lightest ramified of known fields with their Galois
groups, the first having been highlighted in our Section 2.

For covers A2, C2, D2, and E2 there are all together 1630 specialization points τ .
Three of them yield group drops as in Table 5.5. In all three cases, the Galois group

Basic p-adic invariants Slope Content
Cover τ Fact G 2 3 11 2 3 11 RD GRD

C2 − 2393

313
24 Gt 2632

6
3 111011101 1 12211 [2]23 [ ]1011 [ ]212

63.6
87.1

12 L2(11).2 263 11101 1211 63.6

C2 3·115
27

22 2 Gi 11210 6116103535212 42343432
2
121 [ ]1011 [ 5

2
]22 [ ]24

47.6
85.0

12 L2(11).2 11101 6211 42343 80.7

D2 −173

27
22 2 Gi 11210 67663333212 10910921 [ ]1011 [ 3

2
]22 [ ]10

40.4
58.6

12 L2(11).2 11101 627 1091 1 38.8

Table 5.5. Description of K(L, τ) for the only three instances
where the Galois group is smaller than M12 in Cases A2, C2, D2,
and E2
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is PGL2(11) = L2(11), in either a transitive or an intransitive degree twenty-four
representation. The least ramified case is the last one, for which a degree twelve
polynomial is

x12 − 6x10 − 6x9 − 6x8 + 126x7 + 104x6 − 468x5 + 258x4 + 456x3 − 1062x2 + 774x− 380.

The GRD here is small, but still substantially larger than the smallest known GRD
for a PGL2(11) number field of 310/112271/2 ≈ 40.90. This field comes from a
modular form of weight one and conductor 3 · 227 in characteristic 11 [21, App. A].
The examples of this section serve to calibrate expectations for the proximity to
minima of the M12 and M12.2 number fields in the next section.

6. Lightly ramified M12 and M12.2 number fields

This section reports on ramification of specializations to fields ramified within
{2, 3, q} with q = 5 for covers A2, B, Bt and q = 11 for covers C2, D2, E2. Our
presentation continues to use the conventions of §5.3 on field equivalence and of
§5.4 on p-adic ramification.

According to Tables 5.2 and 5.3 the maximal root discriminants our covers can
give for these fields are

δmax
A2 = (272352542)1/24 ≈ 1445, δmax

C2 = (2483421144)1/24 ≈ 2219,

δmax
B = (234316518)1/12 ≈ 344, δmax

D2 = (2403521144)1/24 ≈ 2784,

δmax
E2 = (2743561140)1/24 ≈ 5985.

The fields highlighted below all have substantially smaller root discriminant. Sub-
sections §6.1, §6.2, and §6.3 focus respectively on fields with small root discriminant,
small Galois root discriminant, and at most two ramifying primes.

6.1. Small root discriminant. The smallest root discriminant appearing for our
M12 specializations is approximately 46.2, as reported on the first line of Ta-
ble 6.1 below. This is substantially above the smallest known root discriminant
2231291/3 ≈ 36.9 from [9], discussed above in §2.2. For the larger group M12.2, the
two smallest root discriminants appearing in our list are (2123241122)1/24 ≈ 38.2
and (2203241120)1/24 ≈ 39.4. The smallest root discriminant comes from Cover C2
at τ = 53/22 and the field can be given by the polynomial

fC2(53/22, x) ≈
x24 − 11x23 + 53x22 − 154x21 + 330x20 − 594x19 + 1012x18 − 2255x17

+6512x16 − 17710x15 + 42768x14 − 89067x13 + 154308x12 − 237699x11

+351252x10 − 483318x9 + 623997x8 − 753291x7 + 733491x6 − 520641x5

+278586x4 − 104841x3 + 15552x2 + 2673x+ 81.

The second smallest root discriminant also comes from Cover C2. It arises twice,
once from −173/27 and once from 73/29. Both these specialization points define
the same field. There are seven more M12.2 fields with root discriminant under 50,
each arising exactly once. In order, they come from the covers D2, A2, D2, C2,
A2, A2, and D2.
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6.2. Small Galois root discriminant. For M12, the smallest known Galois root
discriminant appears in [9] and also on the first line of Table 6.1. The fact that E
appears only once in Table 6.1 is just a reflection of the simple fact that q = 5 for
B and Bt while q = 11 for E.

Basic p-adic invariants Slope Content
Cover τ 2 3 q 2 3 q RD GRD

B
5

816321 1110 101321 [ 4
3
, 4
3
, 3]23 [ ]511 [ 3

2
]2

46.2
93.2

Bt 81644 1110 101321 51.6

B
0

1234 99211 3223
2
2 [ 23

6
, 23

6
, 3, 8

3
, 8
3
]23 [ 9

8
, 9
8
]28 [ ]23

52.1
112.0

Bt 1234 1212 3223
2
2 62.5

B
5/2

1212 99211 101321 [ 8
3
, 8
3
, 4
3
, 4
3
]23 [ 9

8
, 9
8
]28 [ 3

2
]2

58.2
132.4

Bt 1212 1212 101321 69.9

B −5 438 99211 101321
[3, 5

2
, 2, 2]6 [ 9

8
, 9
8
]28 [ 3

2
]2

65.3
153.0

Bt 438 1212 101321 78.5

B −3 81644 87211 1 5291
2

[3, 4
3
, 4
3
]23 [ ]28 [ 9

4
]24

73.8
255.6

Bt 816321 8743 101921 103.3

E −319/54 2322
3
2 33333 11161 [2]3 [ 3

2
]3 [ 8

5
]5

146.8
280.6

E 319/54 2322
3
2 33333 11161 146.8

B −5/3 6104822 9161
21 101321

[ 8
3
, 8
3
, 2]23 [2, 2]2 [ 3

2
]2

89.8
287.9

Bt 6104822 9161
21 101321 89.8

Table 6.1. The fourteen M12 fields from our list with Galois
root discriminant ≤ 300, grouped in twin pairs. The two τ ’s for E
both come from σ = 233/2236.

For M12.2, Galois root discriminants can be substantially smaller than the min-
imum known for M12, as illustrated by Table 6.2. In this case, in contrast to M12,
the field giving the smallest known root discriminant also gives the smallest known
Galois root discriminant.

Basic p-adic invariants Slope Content
Cover τ 2 3 q 2 3 q RDGRD

C2 53/22 3621
6 9123

2
33

2
31 1 1 12211 [ ]63 [ 3

2
, 3
2
]22 [ ]212 38.2 65.8

C2 113/23 466 1001092121 1211654321 [2, 2]4 [ ]410 [ ]212 52.1 68.5
C2 −112/2633 121299211 222721 [ 9

8
, 9
8
]28 [ 13

10
]10 63.3 69.1

A2 −2354113/38 8184
4
8 1218915211 424242424242 [3, 2, 2]4 [ 15

8
, 15

8
]28 [ ]22 44.9 73.9

C2

{
−173/27
73/29

112101
2 9123

2
33

2
31 1 1 111011102121 [ ]211 [ 3

2
, 3
2
]22 [ ]10 39.4 74.7

A2 −54/2333 8222822 91299333 424242424242 [
7
2
, 3, 2, 2]2 [ 3

2
, 3
2
]32 [ ]22 45.1 75.4

C2 53/33 2632
6
3 121299211 1091092121 [3]6 [ 9

8
, 9
8
]28 [ ]2 57.1 81.7

C2 −2953/32 9186106101
2 12211 [ 9

4
, 9
4
]24 [ ]212 51.3 88.8

D2 53/22 3423
4
2 915693433211 1211654321 [ ]43 [2, 3

2
]22 [ ]212 50.7 94.8

D2 −112/2633 12129121
21 222721 [ 3

2
, 3
2
]42 [ 13

10
]10 49.2 95.2

Table 6.2. The ten M12.2 fields from our list with the Galois
root discriminant ≤ 100.
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6.3. At most two ramifying primes. Let dL(τ) be the field discriminant of
K(L, τ). Then, generically for our specializations, dL(τ) has the form ±2a3bqc with
all three exponents positive. The few cases where at least one of the exponents is
zero are as follows. For Cover A2, from Table 5.2 the prime 3 drops out from the
discriminant exactly if ord3(τ) ∈ {−15,−25,−35, . . . }. This drop occurs in 2 of
our 447 specializations:

dA2(713/2331552) = 266542,

dA2(32893/273155) = 260542.

For Covers C2 and D2, from Table 5.3 the prime 2 drops out exactly if ord2(τ) ∈
{6, 9, 12, . . . } ∪ {6, 17, 28, . . . }. This much less demanding condition is met by 24
of our 394 specialization points, as listed in Table 6.3.

τ dC2(τ) dD2(τ)
−2953/32 3381122 3481120

−112/2633 3221128 3241128

−29/33 3221132 3241132

−11·1313/2633 3181136 3241136

−3311/26 3201136 3361136

−11/26 3341136 3441136

2611/36 3221136 3221136

11·593/21732 3381136 3481136

−673/2611 3341144 3401144

−212/11 3341144 3401144

−2633/112 3201144 3361144

−26/11 3341144 3401144

τ dC2(τ) dD2(τ)
−26313/33115 3221144 3201144

−26/3311 3181144 3241144

1733/26117 3341144 3401144

29/3·113 3421144 3521144

133/26112 3341144 3441144

73/2611 3241144 3201144

20873/2631511 3201144 1144

36/2611 3241144 3281144

5533/2639112 3221144 3221144

3133/263611 3221144 3221144

893/26112 3241144 3321144

70333/2636114 3221144 3221144

Table 6.3. The 24 specialization points of T 11
3,2,11 at which 2

does out from discriminants of specializations in the C2 and D2
families

Also for Covers C2 and D2 it is possible for 3 to drop out. From Table 5.3 this
occurs if ord3(τ) is in {−12,−23,−34, . . . } for C2 or in {−15,−26,−37, . . . } for
D2. This stringent condition is met once in each case. For C2, this one 3-drop
gives dC2(−551773/23323112) = 2361144. For D, the one 3-drop occurs where there
is also a 2-drop. An equation for the corresponding number field is given at the
end of §7.4.

7. Lifts to the double covers M̃12 and M̃12.2

In this final section, we discuss lifts to M̃12 and M̃12.2. Interestingly, our six
cases behave quite differently from each other.

7.1. Lack of lifts to (2.M12.2)∗. The .2 for the geometrically disconnected degree
twenty-four covers A2, C2, and D2 corresponds to the constant imaginary quadratic
fields Q(

√
−5), Q(

√
−11), and Q(

√
−11) respectively. Accordingly all specializa-

tions have complex conjugation in the class 2C on Table 2.1. Elements of 2C lift to
elements of order 4 in the nonstandard (2.M12.2)∗ as reviewed in §2.6. Thus M12.2
fields of the form K(L2, τ) with L ∈ {A,C,D} do not embed in (2.M12.2)∗ fields.
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The B families do not even give M12.2 fields. Also M12.2 fields of the form
K(E2, τ) do not embed in (2.M12.2)∗ fields, as explained at the end of §7.3 below.
For these reasons, we have deemphasized (2.M12.2)∗ in this paper, despite the fact
that it fits into the framework of our title. An open problem which we do not
pursue here is to explicitly write down a degree forty-eight polynomial in Q[y] with
Galois group (2.M12.2)∗.

7.2. Geometric lifts to M̃12. In this subsection, we work over C so that symbols
such as XL should be understood as complex algebraic curves. Table 7.1 reprints
the six partition triples belonging to M12 of Table 3.1 and for each indicates lifts to
partition triples in M̃12. For a fixed label L in {A,B,Bt, C,D,E}, let (g0, g1, g∞)
be the permutation triple in M12 presented pictorially in Figure 4.1 or 4.2. Then our
main focus is a permutation triple (g̃0, g̃1, g̃∞). Here each g̃k is in the class indicated

in row L̃ and column k of Table 7.1. One has g̃0g̃1g̃∞ = 1 and accordingly one gets
a double cover X̃L of XL. The degree 24 map X̃L → P1 by design has monodromy
group M̃12.

The class of −g̃k is indicated on Table 7.1 right below the class of g̃k. Note that
±g̃0, ±g̃1, and ±g̃∞ multiply either to 1 or −1 in M̃12, according to whether the
number of minus signs is even or odd. Thus our choice of (g̃0, g̃1, g̃∞) could equally
well be replaced by (g̃0,−g̃1,−g̃∞), (−g̃0, g̃1,−g̃∞), or (−g̃0,−g̃1, g̃∞). The choice

we make always minimizes the genus of X̃L.

Cover 0 1 ∞ g Cover 0 1 ∞ g

A 34 2414 (10)2 0 C 3313 26 (11)1 0

Ã 38 2818 (20)4 0 C̃ 3616 46 11212 2
64 212 (20)4 6323 46 (22)2

B 4214 4214 (10)2 0 D 34 2414 (11)1 0

B̃ 442214 442214 (20)4 2 D̃ 38 2818 (22)2 0
442214 442214 (20)4 64 212 11212

Bt 4222 4222 (10)2 2 E 3313 3313 66 0

B̃t 4424 4424 (20)4 4 Ẽ 3616 3616 122 0
4424 4424 (20)4 6323 6323 122

Table 7.1. Lifts of partition triples in M12 to partition triples in M̃12.

Figure 7.3. The dessin of fD̃(t, y) in the complex y-line
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To understand Table 7.1 in diagrammatic terms, consider CoverD as an example.
The curve XD is just the complex x-line. Its cover X̃D is just the complex y-line,
with relation given by y = x2. The dessin drawn in XD in Figure 4.2 “unwinds” to
a double cover dessin in X̃D drawn in Figure 7.3. The monodromy operators are

g̃0 = ρD̃(γ0) = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)

(−1,−2,−3)(−4,−5,−6)(−7,−8,−9)(−10,−11,−12)

g̃1 = ρD̃(γ1) = (3, 4)(5, 7)(8, 10)(11,−12)(−11, 12)(−3,−4)(−5,−7)(−8,−10)

Cover A is extremely similar, with X̃A also covering XA via y = x2.
At a geometric level, the six covers behave similarly, as just described. However

The curves XL are defined over Q(
√
−5), Q, Q, Q(

√
−11), Q(

√
−11), and Q for

L = A, B, Bt, C, D, and E respectively. At issue is whether the cover X̃L can
likewise be defined over this number field.

7.3. Lifts to M̃12. A lifting criterion. A v-adic field Kv has a local root num-
ber ε(Kv) ∈ {1, i,−1,−i}. For example, taking v = ∞, one has ε(C) = −i;
also if Kp/Qp is unramified then ε(Kp) = 1. The invariant ε extends to alge-
bras by multiplicativity: ε(K ′v ×K ′′v ) = ε(K ′v)ε(K

′′
v ). For an algebra Kv, there is a

close relation between the local root number ε(Kv) and the Hasse-Witt invariants
HW (Kv) ∈ {−1, 1}. In fact if the discriminant of Kv is trivial as an element of
Q×v /Q×2v then ε(Kv) = HW (Kv). In this case of trivial discriminant class, one
has ε(Kv) = 1 if and only if the homomorphism hv : Gal(Qv/Qv) → An corre-
sponding to Kv can be lifted into a homomorphism into the Schur double cover,
h̃v : Gal(Qv/Qv) → Ãn. If K is now a degree n number field then one has local
root numbers ε(Kv) multiplying to 1. In the case when the discriminant class is
trivial, then all ε(Kv) are 1 if and only if the homomorphism h : Gal(Q/Q) → An
corresponding to K can be lifted into a homomorphism h̃ : Gal(Q/Q) → Ãn. The
general theory of local root numbers is presented in more detail in [6, §3.3] and
local root numbers are calculated automatically on the associated database.

Since the map M̃12 → M12 is induced from Ã12 → A12, one gets that an M12

number field embeds in an M̃12 number field if and only if all ε(Kv) are trivial.
Also it follows from the above theory that if K and Kt are twin M12 fields then
ε(Kv) = ε(Kt

v) for all v.

Covers B and Bt. From the very last part of [16], summarizing the approach of
[1], we have the general formula

(7.1) ε(K(B, τ)v) = (25− 5τ2, τ)v,

where the right side is a local Hilbert symbol. For example, one gets that K(B, τ)

is obstructed at v = ∞ if and only if τ < −
√

5. Similar explicit computations
identify exactly the locus of obstruction for all primes p. This locus is empty if and
only if p ≡ 3, 7 (20).

In particular, because one has obstructions even in specializations, X̃B cannot
be defined over Q. One can see this more naively as follows. By Table 7.1, one has
eight points on XB corresponding to the 1414. The cover X̃B is ramified at exactly
four of these points, those which correspond to the 2222. But the eight points in
XB are the roots of

x8 + 36x7 + 462x6 + 2228x5 − 585x4 − 30948x3 − 22388x2 + 215964x− 82539
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and this polynomial is irreducible in Z[x].
If τ ∈ Q is a square then of course all the local Hilbert symbols in (7.1) van-

ish. This motivates consideration of the following base-change diagram of smooth
projective complex algebraic curves:

Z̃B → X̃B 7 2
↓ ↓
ZB → XB (with genera 0 0 ).
↓ ↓
P1 → P1 0 0

Here the bottom map is the double cover t 7→ t2 and ZB and Z̃B are the induced
double covers of XB and X̃B respectively. Thus the cover ZB → P1 is a five-point
cover, with ramification invariants 2414 above the fourth roots of 5 and 5212 above
∞. While X̃B is not realizable over Q, Mestre proved that Z̃B is realizable [16].

Rather than seek equations for a degree 24 polynomial giving the cover Z̃B , we
content ourselves with a single example in the context of number fields. Conve-
niently the first twin pair on Table 6.1 is unobstructed. Corresponding equations
are

fB(5, x) ≈ x12 − 2x11 + 6x10 + 15x8 − 48x7 + 66x6 − 468x5 − 810x4

+900x3 + 486x2 + 1188x− 1314,

fBt(5, x) ≈ x12 − 2x11 + 6x10 + 30x9 − 30x8 + 60x7 − 150x6 + 120x5 − 285x4

+150x3 − 120x2 + 90x+ 30.

Carefully taking square roots of the correct field elements, to avoid Galois groups
such as the generically occuring 212.M12, we find covering M̃12 fields to be given by

f̃B(5, y) ≈ y24 − 30y20 + 540y18 + 945y16 − 22500y14 − 58860y12 + 421200y10

+1350000y8 − 7970400y6 + 11638080y4 − 6480000y2 + 1166400,

f̃Bt(5, y) ≈ y24 + 40y22 + 480y20 − 1380y18 − 46260y16 − 10800y14

+1190340y12 − 4429800y10 + 65650500y8 − 324806400y6

+588257280y4 − 398131200y2 + 58982400.

The p-adic factorization partitions of these polynomials for the first |M̃12| = 190080
primes different from 2, 3, and 5 are summarized in Table 2.1. As expected from the
Chebotarev density theorem, the distribution is quite similar to the distribution of
elements of M̃12 in classes. The one class not represented is the central non-identity
class 1A2. Calculating now with five times as many primes, exact equidistribution
would give five classes each for 1A1 and 1A2. In fact, in this range there are eight
primes splitting at the M12 level, 76493 , 2956199 , 5095927 , 7900033, 7927511 ,
10653197 , 11258593, and 12420649 . Those in ordinary type correspond to 1A2
while those in italics to 1A1.

Cover E. For all τ ∈ Q, the algebra K(E, τ) is obstructed at∞, since K(E, τ)∞ ∼=
C6 and ε(C6) = ε(C)6 = (−i)6 = −1. This obstruction can be seen more directly
from Table 2.1: a field in K(E, τ) has complex conjugation in class 2A of M12 of
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cycle type 26. The only class above 2A in M̃12 is 2A2 of cycle type 46, and so the
complex conjugation element cannot lift.

7.4. Lifts to M̃12.2. Lifting for the remaining cases behaves as follows.

Cover A. The polynomial fA(t, x) from §3.2 gives an equation for XA. From Ta-

ble 7.1, we see that f̃A(t, x) = fA(t, y2) gives an equation for X̃A with coefficients

in Q(
√
−5). The Galois group of fA(t, y2) over Q(

√
−5)(t) is M̃12 by construction.

However the Galois group of the rationalized polynomial fA2(t, y2) over Q(t) is

not M̃12.2 = 2.M12.2 but rather an overgroup of shape 22.M12.2, with the final .2
corresponding to Q(

√
−5) present already in the splitting field of fA2(t, x).

The overgroup also has shape 2.M12.2
2. Here the quotient 22 corresponds to

Q(
√

3,
√
−15). Over Q(

√
3), the polynomial fA2(t, x2) has Galois group 2.M12.2.

Over Q(
√
−15) it has Galois group the isoclinic variant (2.M12.2)∗ discussed in

§2.6.

Cover C. Here Table 7.1 says that X̃C is a double cover of XC ramified at six
points and hence of genus two. A defining polynomial is

f̃C(t, y) = Resultantx(y2 − 2h(x), fC(t, x))

where

h(x) = 2x6 + 22x5u− 22y5 − 165x4u− 957x4 − 1804x3z + 4664x3

+4884x2u+ 17754x2 + 4686xu− 15114x+ 385u+ 1243.

Here the Galois group of the rationalized polynomial f̃C2(t, y) is indeed the de-

sired M̃12.2. As an example of an interesting specialization, consider τ = 53/22

corresponding to the first line of Table 6.2. A corresponding polynomial is

f̃C2(53/22, y) ≈
y48 − 22y44 + 495y40 − 4774y36 + 51997y32 − 214038y28 + 64152y26

+2194852y24 − 705672y22 − 4044304y20 − 30696732y18 + 61713630y16

+149602464y14 − 9212940y12 + 569477304y10 + 138870369y8

−484796664y6 + 1029399030y4 + 39870468y2 + 793881.

The fields K(C2, 53/22) and K̃(C2, 53/22) respectively have discriminant, root dis-
criminant, and Galois root discriminant as follows:

d = 2123241122, d̃ = 112d2,

δ = 21/2311111/12 ≈ 38.2, δ̃ = 111/24δ ≈ 42.2,

∆ = 22/3325/181111/12 ≈ 65.8, ∆̃ = 111/24∆ ≈ 72.7.

The first two splitting primes for f̃C2(53/22, x) are 1270747 and 2131991.
The specialization point τ = 53/22 just treated is well-behaved as follows. In

general, to keep ramification of K̃(C, τ) within {2, 3, 11}, one must take special-
ization points in the subset T3,4,11(Z{2,3,11}) of T3,2,11(Z{2,3,11}). While the known

part of T3,2,11(Z{2,3,11}) has 394 points, the subset in T3,4,11(Z{2,3,11}) has only 78

points. In particular, while τ = 53/22 ∈ T3,4,11(Z{2,3,11}), the other six specializa-
tion points for Cover C2 appearing in Table 6.2 are not.
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Cover D. From Table 7.1 we see that fD(t, y2) = 0 is an equation for X̃D with
Q(
√
−11) coefficients. This equation combines the good features of the cases just

treated. Like X̃A but unlike X̃C , the cover X̃D has genus zero. Like Case C but
unlike Case A, the Galois group of the rationalized polynomial fD2(t, y2) over Q(t)

is M̃12.2.
At the 2-3-dropping specialization point 20873/2631511 of Table 6.3, a defining

polynomial with e = 11 is as follows:

f̃D2(20873/2631511, y) ≈
y48 + 2e3y42 + 69e5y36 + 868e7y30 − 4174e7y26 + 11287e9y24

−4174e10y20 + 5340e12y18 + 131481e12y14 + 17599e14y12 + 530098e14y8

+3910e16y6 + 4355569e14y4 + 20870e16y2 + 729e18.

The p-adic factorization patterns for the first |M̃12.2| = 380160 primes different
from 11 are summarized in Table 2.1. Again one sees agreement with the Haar
measure on conjugacy classes. In this case, the first primes split at the M12.2 level
are 3903881, 8453273, 11291131, 12153887, 15061523, 15359303. Two of these are
still split at the M̃12.2 level, namely 11291131 and 15061523.

The Klüners-Malle database [9] contains an M11 field ramified at 661 only. The
polynomial just displayed makes M12 the second sporadic group known to appear
as a subquotient of the Galois group of a field ramified at one prime only. These
two examples are quite different in nature, because 661 is much too big to divide
|M11| while 11 divides |M12|.
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[19] Plans, Bernat; Vila, Núria. Galois covers of P1 over Q with prescribed local or global behavior
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