
An example of current math research: “Dis-

criminants of some Painlevé polynomials,” by
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I. Some general things I knew beforehand

(Polynomials, their roots and discriminants.)

II. A specific thing I knew beforehand. (The

Hermite polynomials.)

III. How I stumbled across a situation where

it seemed that I might be able to con-

tribute something new. (My good luck!)

IV. The process of actually doing the re-

search and writing the paper. (First conjec-

ture, then proof.)

The paper and an accompanying Mathematica

file are available on my homepage.



I. Some things I knew beforehand. The

fundamental theorem of algebra says that a

degree n polynomial f(x) factors into n linear

factors over the complex numbers. Each factor

(x− αj) corresponds to a root αj.

Example 1. A degree four polynomial.

f1(x) = x4 − 1

= (x2 +1)(x2 − 1)

= (x− i)(x+ i)(x− 1)(x+1)



Example 2. A degree twenty polynomial.

f2(x) = x20 + x17 − 4x11 +3x5 − 1

≈ (x− (−1.16− 0.36i)) ·
(x− (−1.16 + 0.36i)) ·
· · · (17 factors) · · · (x− 1)

f2 illustrates a principle: Typical polynomials

have rather randomly scattered roots.



To measure how close the roots are together,

mathematicians have introduced the discrimi-

nant of f :

D(f) =





∏

i<j

|αi − αj|




2

By hand we compute

D(f1) =
(√

2 ·
√
2 ·

√
2 ·

√
2 · 2 · 2

)2
= 256.

By machine, or by a nice linear algebra formula,

we compute

D(f2) =

10605575988819241638597497454592.

The prime factorization of this last number is

219 · 7573 · 979423 · 2727257138346971.

f2 illustrates another principle: Typical poly-

nomials have discriminants which have large

primes in their prime factorizations.



II. A specific thing I knew beforehand. There

are some interesting polynomials called Her-

mite polynomials hn(x) which arise in many

places. One way they can arise is by taking

successive derivatives of the function whose

graph is the bell curve:

f(x) = e−x2/2

f ′(x) = −e−x2/2x

f ′′(x) = e−x2/2(x2 − 1)

f(3)(x) = −e−x2/2(x3 − 3x)

f(4)(x) = e−x2/2(x4 − 6x2 +3)

f(5)(x) = −e−x2/2(x5 − 10x2 +15)
...

f(n)(x) = (−1)ne−x2/2hn(x).

The Hermite polynomial hn(x) has degree n.



The Hermite polynomials are extremely atyp-

ical! Their roots are all real, and moreover

nicely spaced on the real axis. Here are the

roots of h20(x):

Here’s the discriminant of h20(x):



D(h20) =

100763737898388614355527688003
578055557189497372863237259215
112020332401543021781214113113
511884621846316264239637778832
941245615057050789338689848331
811015513291187346373172474675
200000000000000000000000000000
000000000000000000000

This factors as

D(h20) = 22103905507211111131317171919

In general, D(hn) = 112233 · · ·nn. In “product

notation” this is written

D(hn) =
n
∏

j=1

jj

This formula was found and proven in the late

1800’s. Polynomials as nice as the Hermite

polynomials are extremely rare!



III. How I stumbled across a situation where

it seemed that I might be able to con-

tribute something new. Browsing the liter-

ature, I found the Yablonksy-Vorobiev polyno-

mials

p0(x) = 1

p1(x) = x

p2(x) = x3 +1

p3(x) = x6 +5x3 − 5

p4(x) = x10 +15x7 +175x

I took some of their discriminants, finding for

example that D(p9) is a 1096 digit number,

which miraculously factors as

37025305725211176131171717.

For sure, I knew the pn are quite special! While

Hermite polynomials are linear in nature, the

Yablonsky-Vorobiev polynomials are quadratic

in nature. For example, degree(hn) = n but

degree(pn) = (n2 + n)/2.



Next, I looked at the complex roots of the pn.

Here are the roots of p9:

From this point of view too, it was totally clear

that the pn are very special.



The pn are related to solutions to a differential

equation called the Painlevé II equation. There

are altogether six Painlevé equations and I looked

through the literature on the others, finding

two families of polynomials related to Painlevé

IV. One family is the biHermite polynomials

hm,n(x) and the other is the Okamoto poly-

nomials qm,n(x). They too have highly factor-

izing discriminants and very regular roots:

On the left is h9,7 and on the right is q5,4 with

discriminants

D(h9,7) = 2191231152542073991127513117

D(q5,4) = 21410531572521133132081976



IV. The process of actually doing the re-

search and writing the paper. To go any

further, I needed conjectural discriminant for-

mulas. I looked at the evidence:

...

D(p7) = 32705125711211441313

D(p8) = 34505195717511991352

D(p9) = 37025305725211176131171717

D(p10) = 3102654557343112751320817681919

...

I conjectured that

D(pn) =
2n−1
∏

j=3,5,7,9,...

jj(2m+1−j)2/4.

I did the same thing for the Hermite polynomi-

als and the Okamoto polynomials. My conjec-

tural formulas for D(hm,n) and D(qm,n) were

more complicated, because there are two in-

dices m and n in these cases.



To prove my formulas for D(pm) I used in-

duction on m. For D(hm,n) and D(qm,n) I

used a more complicated double induction. In

each case, I had to also prove also that a given

polynomial relates nicely to its immediate pre-

decessors; this meant establishing resultant

formulas as well as the desired discriminant

formulas. Here are the roots of p9, p8, and

p7, followed by all the roots superimposed:


